xref: /aosp_15_r20/external/armnn/delegate/test/RedefineTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateRedefineTfLiteModel(tflite::BuiltinOperator redefineOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & inputTensorShape,const std::vector<int32_t> & outputTensorShape,const std::vector<int32_t> & targetShape,bool useOption=true,float quantScale=1.0f,int quantOffset=0)24 std::vector<char> CreateRedefineTfLiteModel(
25         tflite::BuiltinOperator redefineOperatorCode,
26         tflite::TensorType tensorType,
27         const std::vector<int32_t>& inputTensorShape,
28         const std::vector<int32_t>& outputTensorShape,
29         const std::vector<int32_t>& targetShape,
30         bool useOption = true,
31         float quantScale = 1.0f,
32         int quantOffset  = 0)
33 {
34     using namespace tflite;
35     flatbuffers::FlatBufferBuilder flatBufferBuilder;
36     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
37     buffers.push_back(CreateBuffer(flatBufferBuilder));
38     buffers.push_back(CreateBuffer(flatBufferBuilder));
39 
40     auto quantizationParameters =
41             CreateQuantizationParameters(flatBufferBuilder,
42                                          0,
43                                          0,
44                                          flatBufferBuilder.CreateVector<float>({ quantScale }),
45                                          flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
46 
47     auto inputTensor = CreateTensor(flatBufferBuilder,
48                                     flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
49                                                                             inputTensorShape.size()),
50                                     tensorType,
51                                     1,
52                                     flatBufferBuilder.CreateString("input"),
53                                     quantizationParameters);
54 
55     std::vector<flatbuffers::Offset<Tensor>> tensors;
56     std::vector<int32_t> operatorInputs;
57     std::vector<int> subgraphInputs;
58     flatbuffers::Offset<void> operatorBuiltinOptions;
59 
60     if (useOption)
61     {
62         buffers.push_back(CreateBuffer(flatBufferBuilder));
63         auto outputTensor = CreateTensor(flatBufferBuilder,
64                                          flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
65                                                                                  outputTensorShape.size()),
66                                          tensorType,
67                                          2,
68                                          flatBufferBuilder.CreateString("output"),
69                                          quantizationParameters);
70         tensors = { inputTensor, outputTensor};
71         operatorInputs = {0};
72         subgraphInputs = {0};
73         operatorBuiltinOptions = CreateReshapeOptions(
74                 flatBufferBuilder,
75                 flatBufferBuilder.CreateVector(targetShape.data(), targetShape.size())).Union();
76     }
77     else
78     {
79         buffers.push_back(
80                 CreateBuffer(flatBufferBuilder,
81                              flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(targetShape.data()),
82                                                             sizeof(int32_t) * targetShape.size())));
83         int32_t size = static_cast<int32_t>(targetShape.size());
84         auto shapeTensor = CreateTensor(flatBufferBuilder,
85                                         flatBufferBuilder.CreateVector<int32_t>( { size } ),
86                                         tflite::TensorType_INT32,
87                                         2,
88                                         flatBufferBuilder.CreateString("shape"));
89 
90         buffers.push_back(CreateBuffer(flatBufferBuilder));
91         auto outputTensor = CreateTensor(flatBufferBuilder,
92                                          flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
93                                                                                  outputTensorShape.size()),
94                                          tensorType,
95                                          3,
96                                          flatBufferBuilder.CreateString("output"),
97                                          quantizationParameters);
98 
99         tensors = { inputTensor, outputTensor, shapeTensor };
100         operatorInputs = {0, 2};
101         subgraphInputs = {0, 2};
102         operatorBuiltinOptions = CreateReshapeOptions(flatBufferBuilder).Union();
103     }
104 
105     // create operator
106     tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_ReshapeOptions;
107 
108     const std::vector<int32_t> operatorOutputs{1};
109     flatbuffers::Offset <Operator> redefineOperator =
110             CreateOperator(flatBufferBuilder,
111                            0,
112                            flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
113                            flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
114                            operatorBuiltinOptionsType,
115                            operatorBuiltinOptions);
116 
117     const std::vector<int> subgraphOutputs{1};
118     flatbuffers::Offset <SubGraph> subgraph =
119             CreateSubGraph(flatBufferBuilder,
120                            flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
121                            flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
122                            flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
123                            flatBufferBuilder.CreateVector(&redefineOperator, 1));
124 
125     flatbuffers::Offset <flatbuffers::String> modelDescription =
126             flatBufferBuilder.CreateString("ArmnnDelegate: Reshape Operator Model");
127     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder,
128                                                                          redefineOperatorCode);
129 
130     flatbuffers::Offset <Model> flatbufferModel =
131             CreateModel(flatBufferBuilder,
132                         TFLITE_SCHEMA_VERSION,
133                         flatBufferBuilder.CreateVector(&operatorCode, 1),
134                         flatBufferBuilder.CreateVector(&subgraph, 1),
135                         modelDescription,
136                         flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
137 
138     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
139 
140     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
141                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
142 }
143 
144 template <typename T>
RedefineTest(tflite::BuiltinOperator redefineOperatorCode,tflite::TensorType tensorType,const std::vector<armnn::BackendId> & backends,const std::vector<int32_t> & inputShape,std::vector<int32_t> & outputShape,std::vector<T> & inputValues,std::vector<T> & expectedOutputValues,std::vector<int32_t> & targetShape,bool useOption=true,float quantScale=1.0f,int quantOffset=0)145 void RedefineTest(tflite::BuiltinOperator redefineOperatorCode,
146                   tflite::TensorType tensorType,
147                   const std::vector<armnn::BackendId>& backends,
148                   const std::vector<int32_t>& inputShape,
149                   std::vector<int32_t>& outputShape,
150                   std::vector<T>& inputValues,
151                   std::vector<T>& expectedOutputValues,
152                   std::vector<int32_t>& targetShape,
153                   bool useOption = true,
154                   float quantScale = 1.0f,
155                   int quantOffset  = 0)
156 {
157     using namespace delegateTestInterpreter;
158     std::vector<char> modelBuffer = CreateRedefineTfLiteModel(redefineOperatorCode,
159                                                               tensorType,
160                                                               inputShape,
161                                                               outputShape,
162                                                               targetShape,
163                                                               useOption,
164                                                               quantScale,
165                                                               quantOffset);
166 
167     // Setup interpreter with just TFLite Runtime.
168     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
169     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
170     CHECK(tfLiteInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
171     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
172     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
173     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
174 
175     // Setup interpreter with Arm NN Delegate applied.
176     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
177     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
178     CHECK(armnnInterpreter.FillInputTensor<T>(inputValues, 0) == kTfLiteOk);
179     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
180     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
181     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
182 
183     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
184     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
185 
186     tfLiteInterpreter.Cleanup();
187     armnnInterpreter.Cleanup();
188 }
189 
190 } // anonymous namespace