xref: /aosp_15_r20/external/armnn/delegate/test/GatherTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateGatherTfLiteModel(tflite::TensorType tensorType,std::vector<int32_t> & paramsShape,std::vector<int32_t> & indicesShape,const std::vector<int32_t> & expectedOutputShape,int32_t axis,float quantScale=1.0f,int quantOffset=0)24 std::vector<char> CreateGatherTfLiteModel(tflite::TensorType tensorType,
25                                           std::vector<int32_t>& paramsShape,
26                                           std::vector<int32_t>& indicesShape,
27                                           const std::vector<int32_t>& expectedOutputShape,
28                                           int32_t axis,
29                                           float quantScale = 1.0f,
30                                           int quantOffset = 0)
31 {
32     using namespace tflite;
33     flatbuffers::FlatBufferBuilder flatBufferBuilder;
34 
35     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
36     buffers.push_back(CreateBuffer(flatBufferBuilder));
37     buffers.push_back(CreateBuffer(flatBufferBuilder));
38     buffers.push_back(CreateBuffer(flatBufferBuilder));
39     buffers.push_back(CreateBuffer(flatBufferBuilder));
40 
41     auto quantizationParameters =
42              CreateQuantizationParameters(flatBufferBuilder,
43                                           0,
44                                           0,
45                                           flatBufferBuilder.CreateVector<float>({quantScale}),
46                                           flatBufferBuilder.CreateVector<int64_t>({quantOffset}));
47 
48     std::array<flatbuffers::Offset<Tensor>, 3> tensors;
49     tensors[0] = CreateTensor(flatBufferBuilder,
50                               flatBufferBuilder.CreateVector<int32_t>(paramsShape.data(),
51                                                                       paramsShape.size()),
52                               tensorType,
53                               1,
54                               flatBufferBuilder.CreateString("params"),
55                               quantizationParameters);
56     tensors[1] = CreateTensor(flatBufferBuilder,
57                               flatBufferBuilder.CreateVector<int32_t>(indicesShape.data(),
58                                                                       indicesShape.size()),
59                               ::tflite::TensorType_INT32,
60                               2,
61                               flatBufferBuilder.CreateString("indices"),
62                               quantizationParameters);
63     tensors[2] = CreateTensor(flatBufferBuilder,
64                               flatBufferBuilder.CreateVector<int32_t>(expectedOutputShape.data(),
65                                                                       expectedOutputShape.size()),
66                               tensorType,
67                               3,
68                               flatBufferBuilder.CreateString("output"),
69                               quantizationParameters);
70 
71 
72     // create operator
73     tflite::BuiltinOptions    operatorBuiltinOptionsType = tflite::BuiltinOptions_GatherOptions;
74     flatbuffers::Offset<void> operatorBuiltinOptions     = CreateGatherOptions(flatBufferBuilder).Union();
75 
76     const std::vector<int>        operatorInputs{{0, 1}};
77     const std::vector<int>        operatorOutputs{2};
78     flatbuffers::Offset<Operator> controlOperator        =
79                                       CreateOperator(flatBufferBuilder,
80                                                      0,
81                                                      flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(),
82                                                                                              operatorInputs.size()),
83                                                      flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(),
84                                                                                              operatorOutputs.size()),
85                                                      operatorBuiltinOptionsType,
86                                                      operatorBuiltinOptions);
87 
88     const std::vector<int>        subgraphInputs{{0, 1}};
89     const std::vector<int>        subgraphOutputs{2};
90     flatbuffers::Offset<SubGraph> subgraph               =
91                                       CreateSubGraph(flatBufferBuilder,
92                                                      flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
93                                                      flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(),
94                                                                                              subgraphInputs.size()),
95                                                      flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(),
96                                                                                              subgraphOutputs.size()),
97                                                      flatBufferBuilder.CreateVector(&controlOperator, 1));
98 
99     flatbuffers::Offset<flatbuffers::String> modelDescription =
100                                                  flatBufferBuilder.CreateString("ArmnnDelegate: GATHER Operator Model");
101     flatbuffers::Offset<OperatorCode>        operatorCode     = CreateOperatorCode(flatBufferBuilder,
102                                                                                    BuiltinOperator_GATHER);
103 
104     flatbuffers::Offset<Model> flatbufferModel =
105                                    CreateModel(flatBufferBuilder,
106                                                TFLITE_SCHEMA_VERSION,
107                                                flatBufferBuilder.CreateVector(&operatorCode, 1),
108                                                flatBufferBuilder.CreateVector(&subgraph, 1),
109                                                modelDescription,
110                                                flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
111 
112     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
113 
114     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
115                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
116 }
117 
118 template<typename T>
GatherTest(tflite::TensorType tensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & paramsShape,std::vector<int32_t> & indicesShape,std::vector<int32_t> & expectedOutputShape,int32_t axis,std::vector<T> & paramsValues,std::vector<int32_t> & indicesValues,std::vector<T> & expectedOutputValues,float quantScale=1.0f,int quantOffset=0)119 void GatherTest(tflite::TensorType tensorType,
120                 std::vector<armnn::BackendId>& backends,
121                 std::vector<int32_t>& paramsShape,
122                 std::vector<int32_t>& indicesShape,
123                 std::vector<int32_t>& expectedOutputShape,
124                 int32_t axis,
125                 std::vector<T>& paramsValues,
126                 std::vector<int32_t>& indicesValues,
127                 std::vector<T>& expectedOutputValues,
128                 float quantScale = 1.0f,
129                 int quantOffset = 0)
130 {
131     using namespace delegateTestInterpreter;
132     std::vector<char> modelBuffer = CreateGatherTfLiteModel(tensorType,
133                                                             paramsShape,
134                                                             indicesShape,
135                                                             expectedOutputShape,
136                                                             axis,
137                                                             quantScale,
138                                                             quantOffset);
139     // Setup interpreter with just TFLite Runtime.
140     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
141     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
142     CHECK(tfLiteInterpreter.FillInputTensor<T>(paramsValues, 0) == kTfLiteOk);
143     CHECK(tfLiteInterpreter.FillInputTensor<int32_t>(indicesValues, 1) == kTfLiteOk);
144     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
145     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
146     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
147 
148     // Setup interpreter with Arm NN Delegate applied.
149     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
150     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
151     CHECK(armnnInterpreter.FillInputTensor<T>(paramsValues, 0) == kTfLiteOk);
152     CHECK(armnnInterpreter.FillInputTensor<int32_t>(indicesValues, 1) == kTfLiteOk);
153     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
154     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
155     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
156 
157     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
158     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
159 
160     tfLiteInterpreter.Cleanup();
161     armnnInterpreter.Cleanup();
162 }
163 } // anonymous namespace