xref: /aosp_15_r20/external/armnn/delegate/test/GatherNdTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateGatherNdTfLiteModel(tflite::TensorType tensorType,std::vector<int32_t> & paramsShape,std::vector<int32_t> & indicesShape,const std::vector<int32_t> & expectedOutputShape,float quantScale=1.0f,int quantOffset=0)24 std::vector<char> CreateGatherNdTfLiteModel(tflite::TensorType tensorType,
25                                           std::vector<int32_t>& paramsShape,
26                                           std::vector<int32_t>& indicesShape,
27                                           const std::vector<int32_t>& expectedOutputShape,
28                                           float quantScale = 1.0f,
29                                           int quantOffset = 0)
30 {
31     using namespace tflite;
32     flatbuffers::FlatBufferBuilder flatBufferBuilder;
33 
34     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
35     buffers.push_back(CreateBuffer(flatBufferBuilder));
36     buffers.push_back(CreateBuffer(flatBufferBuilder));
37     buffers.push_back(CreateBuffer(flatBufferBuilder));
38     buffers.push_back(CreateBuffer(flatBufferBuilder));
39 
40     auto quantizationParameters =
41              CreateQuantizationParameters(flatBufferBuilder,
42                                           0,
43                                           0,
44                                           flatBufferBuilder.CreateVector<float>({quantScale}),
45                                           flatBufferBuilder.CreateVector<int64_t>({quantOffset}));
46 
47     std::array<flatbuffers::Offset<Tensor>, 3> tensors;
48     tensors[0] = CreateTensor(flatBufferBuilder,
49                               flatBufferBuilder.CreateVector<int32_t>(paramsShape.data(),
50                                                                       paramsShape.size()),
51                               tensorType,
52                               1,
53                               flatBufferBuilder.CreateString("params"),
54                               quantizationParameters);
55     tensors[1] = CreateTensor(flatBufferBuilder,
56                               flatBufferBuilder.CreateVector<int32_t>(indicesShape.data(),
57                                                                       indicesShape.size()),
58                               ::tflite::TensorType_INT32,
59                               2,
60                               flatBufferBuilder.CreateString("indices"),
61                               quantizationParameters);
62     tensors[2] = CreateTensor(flatBufferBuilder,
63                               flatBufferBuilder.CreateVector<int32_t>(expectedOutputShape.data(),
64                                                                       expectedOutputShape.size()),
65                               tensorType,
66                               3,
67                               flatBufferBuilder.CreateString("output"),
68                               quantizationParameters);
69 
70 
71     // create operator
72     tflite::BuiltinOptions    operatorBuiltinOptionsType = tflite::BuiltinOptions_GatherNdOptions;
73     flatbuffers::Offset<void> operatorBuiltinOptions     = CreateGatherNdOptions(flatBufferBuilder).Union();
74 
75     const std::vector<int>        operatorInputs{{0, 1}};
76     const std::vector<int>        operatorOutputs{2};
77     flatbuffers::Offset<Operator> controlOperator        =
78                                       CreateOperator(flatBufferBuilder,
79                                                      0,
80                                                      flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(),
81                                                                                              operatorInputs.size()),
82                                                      flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(),
83                                                                                              operatorOutputs.size()),
84                                                      operatorBuiltinOptionsType,
85                                                      operatorBuiltinOptions);
86 
87     const std::vector<int>        subgraphInputs{{0, 1}};
88     const std::vector<int>        subgraphOutputs{2};
89     flatbuffers::Offset<SubGraph> subgraph               =
90                                       CreateSubGraph(flatBufferBuilder,
91                                                      flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
92                                                      flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(),
93                                                                                              subgraphInputs.size()),
94                                                      flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(),
95                                                                                              subgraphOutputs.size()),
96                                                      flatBufferBuilder.CreateVector(&controlOperator, 1));
97 
98     flatbuffers::Offset<flatbuffers::String> modelDescription =
99                                              flatBufferBuilder.CreateString("ArmnnDelegate: GATHER_ND Operator Model");
100     flatbuffers::Offset<OperatorCode>        operatorCode     = CreateOperatorCode(flatBufferBuilder,
101                                                                                    BuiltinOperator_GATHER_ND);
102 
103     flatbuffers::Offset<Model> flatbufferModel =
104                                    CreateModel(flatBufferBuilder,
105                                                TFLITE_SCHEMA_VERSION,
106                                                flatBufferBuilder.CreateVector(&operatorCode, 1),
107                                                flatBufferBuilder.CreateVector(&subgraph, 1),
108                                                modelDescription,
109                                                flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
110 
111     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
112 
113     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
114                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
115 }
116 
117 template<typename T>
GatherNdTest(tflite::TensorType tensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & paramsShape,std::vector<int32_t> & indicesShape,std::vector<int32_t> & expectedOutputShape,std::vector<T> & paramsValues,std::vector<int32_t> & indicesValues,std::vector<T> & expectedOutputValues,float quantScale=1.0f,int quantOffset=0)118 void GatherNdTest(tflite::TensorType tensorType,
119                 std::vector<armnn::BackendId>& backends,
120                 std::vector<int32_t>& paramsShape,
121                 std::vector<int32_t>& indicesShape,
122                 std::vector<int32_t>& expectedOutputShape,
123                 std::vector<T>& paramsValues,
124                 std::vector<int32_t>& indicesValues,
125                 std::vector<T>& expectedOutputValues,
126                 float quantScale = 1.0f,
127                 int quantOffset = 0)
128 {
129     using namespace delegateTestInterpreter;
130     std::vector<char> modelBuffer = CreateGatherNdTfLiteModel(tensorType,
131                                                             paramsShape,
132                                                             indicesShape,
133                                                             expectedOutputShape,
134                                                             quantScale,
135                                                             quantOffset);
136     // Setup interpreter with just TFLite Runtime.
137     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
138     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
139     CHECK(tfLiteInterpreter.FillInputTensor<T>(paramsValues, 0) == kTfLiteOk);
140     CHECK(tfLiteInterpreter.FillInputTensor<int32_t>(indicesValues, 1) == kTfLiteOk);
141     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
142     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
143     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
144 
145     // Setup interpreter with Arm NN Delegate applied.
146     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
147     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
148     CHECK(armnnInterpreter.FillInputTensor<T>(paramsValues, 0) == kTfLiteOk);
149     CHECK(armnnInterpreter.FillInputTensor<int32_t>(indicesValues, 1) == kTfLiteOk);
150     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
151     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
152     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
153 
154     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
155     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, expectedOutputShape);
156 
157     tfLiteInterpreter.Cleanup();
158     armnnInterpreter.Cleanup();
159 }
160 } // anonymous namespace