1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/time/time.h"
16 #include "absl/time/civil_time.h"
17
18 #if defined(_MSC_VER)
19 #include <winsock2.h> // for timeval
20 #endif
21
22 #include "absl/base/config.h"
23
24 // For feature testing and determining which headers can be included.
25 #if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L
26 #include <version>
27 #endif
28
29 #include <chrono> // NOLINT(build/c++11)
30 #ifdef __cpp_lib_three_way_comparison
31 #include <compare>
32 #endif // __cpp_lib_three_way_comparison
33 #include <cstdint>
34 #include <cstring>
35 #include <ctime>
36 #include <iomanip>
37 #include <ios>
38 #include <limits>
39 #include <string>
40
41 #include "gmock/gmock.h"
42 #include "gtest/gtest.h"
43 #include "absl/numeric/int128.h"
44 #include "absl/strings/str_format.h"
45 #include "absl/time/clock.h"
46 #include "absl/time/internal/test_util.h"
47
48 namespace {
49
50 #if defined(GTEST_USES_SIMPLE_RE) && GTEST_USES_SIMPLE_RE
51 const char kZoneAbbrRE[] = ".*"; // just punt
52 #else
53 const char kZoneAbbrRE[] = "[A-Za-z]{3,4}|[-+][0-9]{2}([0-9]{2})?";
54 #endif
55
56 // This helper is a macro so that failed expectations show up with the
57 // correct line numbers.
58 #define EXPECT_CIVIL_INFO(ci, y, m, d, h, min, s, off, isdst) \
59 do { \
60 EXPECT_EQ(y, ci.cs.year()); \
61 EXPECT_EQ(m, ci.cs.month()); \
62 EXPECT_EQ(d, ci.cs.day()); \
63 EXPECT_EQ(h, ci.cs.hour()); \
64 EXPECT_EQ(min, ci.cs.minute()); \
65 EXPECT_EQ(s, ci.cs.second()); \
66 EXPECT_EQ(off, ci.offset); \
67 EXPECT_EQ(isdst, ci.is_dst); \
68 EXPECT_THAT(ci.zone_abbr, testing::MatchesRegex(kZoneAbbrRE)); \
69 } while (0)
70
71 // A gMock matcher to match timespec values. Use this matcher like:
72 // timespec ts1, ts2;
73 // EXPECT_THAT(ts1, TimespecMatcher(ts2));
74 MATCHER_P(TimespecMatcher, ts, "") {
75 if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec) return true;
76 *result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} ";
77 *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}";
78 return false;
79 }
80
81 // A gMock matcher to match timeval values. Use this matcher like:
82 // timeval tv1, tv2;
83 // EXPECT_THAT(tv1, TimevalMatcher(tv2));
84 MATCHER_P(TimevalMatcher, tv, "") {
85 if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec) return true;
86 *result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} ";
87 *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}";
88 return false;
89 }
90
TEST(Time,ConstExpr)91 TEST(Time, ConstExpr) {
92 constexpr absl::Time t0 = absl::UnixEpoch();
93 static_assert(t0 == absl::UnixEpoch(), "UnixEpoch");
94 constexpr absl::Time t1 = absl::InfiniteFuture();
95 static_assert(t1 != absl::UnixEpoch(), "InfiniteFuture");
96 constexpr absl::Time t2 = absl::InfinitePast();
97 static_assert(t2 != absl::UnixEpoch(), "InfinitePast");
98 constexpr absl::Time t3 = absl::FromUnixNanos(0);
99 static_assert(t3 == absl::UnixEpoch(), "FromUnixNanos");
100 constexpr absl::Time t4 = absl::FromUnixMicros(0);
101 static_assert(t4 == absl::UnixEpoch(), "FromUnixMicros");
102 constexpr absl::Time t5 = absl::FromUnixMillis(0);
103 static_assert(t5 == absl::UnixEpoch(), "FromUnixMillis");
104 constexpr absl::Time t6 = absl::FromUnixSeconds(0);
105 static_assert(t6 == absl::UnixEpoch(), "FromUnixSeconds");
106 constexpr absl::Time t7 = absl::FromTimeT(0);
107 static_assert(t7 == absl::UnixEpoch(), "FromTimeT");
108 }
109
TEST(Time,ValueSemantics)110 TEST(Time, ValueSemantics) {
111 absl::Time a; // Default construction
112 absl::Time b = a; // Copy construction
113 EXPECT_EQ(a, b);
114 absl::Time c(a); // Copy construction (again)
115 EXPECT_EQ(a, b);
116 EXPECT_EQ(a, c);
117 EXPECT_EQ(b, c);
118 b = c; // Assignment
119 EXPECT_EQ(a, b);
120 EXPECT_EQ(a, c);
121 EXPECT_EQ(b, c);
122 }
123
TEST(Time,UnixEpoch)124 TEST(Time, UnixEpoch) {
125 const auto ci = absl::UTCTimeZone().At(absl::UnixEpoch());
126 EXPECT_EQ(absl::CivilSecond(1970, 1, 1, 0, 0, 0), ci.cs);
127 EXPECT_EQ(absl::ZeroDuration(), ci.subsecond);
128 EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs));
129 }
130
TEST(Time,Breakdown)131 TEST(Time, Breakdown) {
132 absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/New_York");
133 absl::Time t = absl::UnixEpoch();
134
135 // The Unix epoch as seen in NYC.
136 auto ci = tz.At(t);
137 EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 19, 0, 0, -18000, false);
138 EXPECT_EQ(absl::ZeroDuration(), ci.subsecond);
139 EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs));
140
141 // Just before the epoch.
142 t -= absl::Nanoseconds(1);
143 ci = tz.At(t);
144 EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 18, 59, 59, -18000, false);
145 EXPECT_EQ(absl::Nanoseconds(999999999), ci.subsecond);
146 EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs));
147
148 // Some time later.
149 t += absl::Hours(24) * 2735;
150 t += absl::Hours(18) + absl::Minutes(30) + absl::Seconds(15) +
151 absl::Nanoseconds(9);
152 ci = tz.At(t);
153 EXPECT_CIVIL_INFO(ci, 1977, 6, 28, 14, 30, 15, -14400, true);
154 EXPECT_EQ(8, ci.subsecond / absl::Nanoseconds(1));
155 EXPECT_EQ(absl::Weekday::tuesday, absl::GetWeekday(ci.cs));
156 }
157
TEST(Time,AdditiveOperators)158 TEST(Time, AdditiveOperators) {
159 const absl::Duration d = absl::Nanoseconds(1);
160 const absl::Time t0;
161 const absl::Time t1 = t0 + d;
162
163 EXPECT_EQ(d, t1 - t0);
164 EXPECT_EQ(-d, t0 - t1);
165 EXPECT_EQ(t0, t1 - d);
166
167 absl::Time t(t0);
168 EXPECT_EQ(t0, t);
169 t += d;
170 EXPECT_EQ(t0 + d, t);
171 EXPECT_EQ(d, t - t0);
172 t -= d;
173 EXPECT_EQ(t0, t);
174
175 // Tests overflow between subseconds and seconds.
176 t = absl::UnixEpoch();
177 t += absl::Milliseconds(500);
178 EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t);
179 t += absl::Milliseconds(600);
180 EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(1100), t);
181 t -= absl::Milliseconds(600);
182 EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t);
183 t -= absl::Milliseconds(500);
184 EXPECT_EQ(absl::UnixEpoch(), t);
185 }
186
TEST(Time,RelationalOperators)187 TEST(Time, RelationalOperators) {
188 constexpr absl::Time t1 = absl::FromUnixNanos(0);
189 constexpr absl::Time t2 = absl::FromUnixNanos(1);
190 constexpr absl::Time t3 = absl::FromUnixNanos(2);
191
192 static_assert(absl::UnixEpoch() == t1, "");
193 static_assert(t1 == t1, "");
194 static_assert(t2 == t2, "");
195 static_assert(t3 == t3, "");
196
197 static_assert(t1 < t2, "");
198 static_assert(t2 < t3, "");
199 static_assert(t1 < t3, "");
200
201 static_assert(t1 <= t1, "");
202 static_assert(t1 <= t2, "");
203 static_assert(t2 <= t2, "");
204 static_assert(t2 <= t3, "");
205 static_assert(t3 <= t3, "");
206 static_assert(t1 <= t3, "");
207
208 static_assert(t2 > t1, "");
209 static_assert(t3 > t2, "");
210 static_assert(t3 > t1, "");
211
212 static_assert(t2 >= t2, "");
213 static_assert(t2 >= t1, "");
214 static_assert(t3 >= t3, "");
215 static_assert(t3 >= t2, "");
216 static_assert(t1 >= t1, "");
217 static_assert(t3 >= t1, "");
218
219 #ifdef ABSL_INTERNAL_TIME_HAS_THREE_WAY_COMPARISON
220
221 static_assert((t1 <=> t1) == std::strong_ordering::equal, "");
222 static_assert((t2 <=> t2) == std::strong_ordering::equal, "");
223 static_assert((t3 <=> t3) == std::strong_ordering::equal, "");
224
225 static_assert((t1 <=> t2) == std::strong_ordering::less, "");
226 static_assert((t2 <=> t3) == std::strong_ordering::less, "");
227 static_assert((t1 <=> t3) == std::strong_ordering::less, "");
228
229 static_assert((t2 <=> t1) == std::strong_ordering::greater, "");
230 static_assert((t3 <=> t2) == std::strong_ordering::greater, "");
231 static_assert((t3 <=> t1) == std::strong_ordering::greater, "");
232
233 #endif // ABSL_INTERNAL_TIME_HAS_THREE_WAY_COMPARISON
234 }
235
TEST(Time,Infinity)236 TEST(Time, Infinity) {
237 constexpr absl::Time ifuture = absl::InfiniteFuture();
238 constexpr absl::Time ipast = absl::InfinitePast();
239
240 static_assert(ifuture == ifuture, "");
241 static_assert(ipast == ipast, "");
242 static_assert(ipast < ifuture, "");
243 static_assert(ifuture > ipast, "");
244
245 #ifdef ABSL_INTERNAL_TIME_HAS_THREE_WAY_COMPARISON
246
247 static_assert((ifuture <=> ifuture) == std::strong_ordering::equal, "");
248 static_assert((ipast <=> ipast) == std::strong_ordering::equal, "");
249 static_assert((ipast <=> ifuture) == std::strong_ordering::less, "");
250 static_assert((ifuture <=> ipast) == std::strong_ordering::greater, "");
251
252 #endif // ABSL_INTERNAL_TIME_HAS_THREE_WAY_COMPARISON
253
254 // Arithmetic saturates
255 EXPECT_EQ(ifuture, ifuture + absl::Seconds(1));
256 EXPECT_EQ(ifuture, ifuture - absl::Seconds(1));
257 EXPECT_EQ(ipast, ipast + absl::Seconds(1));
258 EXPECT_EQ(ipast, ipast - absl::Seconds(1));
259
260 EXPECT_EQ(absl::InfiniteDuration(), ifuture - ifuture);
261 EXPECT_EQ(absl::InfiniteDuration(), ifuture - ipast);
262 EXPECT_EQ(-absl::InfiniteDuration(), ipast - ifuture);
263 EXPECT_EQ(-absl::InfiniteDuration(), ipast - ipast);
264
265 constexpr absl::Time t = absl::UnixEpoch(); // Any finite time.
266 static_assert(t < ifuture, "");
267 static_assert(t > ipast, "");
268
269 #ifdef ABSL_INTERNAL_TIME_HAS_THREE_WAY_COMPARISON
270
271 static_assert((t <=> ifuture) == std::strong_ordering::less, "");
272 static_assert((t <=> ipast) == std::strong_ordering::greater, "");
273 static_assert((ipast <=> t) == std::strong_ordering::less, "");
274 static_assert((ifuture <=> t) == std::strong_ordering::greater, "");
275
276 #endif // ABSL_INTERNAL_TIME_HAS_THREE_WAY_COMPARISON
277
278 EXPECT_EQ(ifuture, t + absl::InfiniteDuration());
279 EXPECT_EQ(ipast, t - absl::InfiniteDuration());
280 }
281
TEST(Time,FloorConversion)282 TEST(Time, FloorConversion) {
283 #define TEST_FLOOR_CONVERSION(TO, FROM) \
284 EXPECT_EQ(1, TO(FROM(1001))); \
285 EXPECT_EQ(1, TO(FROM(1000))); \
286 EXPECT_EQ(0, TO(FROM(999))); \
287 EXPECT_EQ(0, TO(FROM(1))); \
288 EXPECT_EQ(0, TO(FROM(0))); \
289 EXPECT_EQ(-1, TO(FROM(-1))); \
290 EXPECT_EQ(-1, TO(FROM(-999))); \
291 EXPECT_EQ(-1, TO(FROM(-1000))); \
292 EXPECT_EQ(-2, TO(FROM(-1001)));
293
294 TEST_FLOOR_CONVERSION(absl::ToUnixMicros, absl::FromUnixNanos);
295 TEST_FLOOR_CONVERSION(absl::ToUnixMillis, absl::FromUnixMicros);
296 TEST_FLOOR_CONVERSION(absl::ToUnixSeconds, absl::FromUnixMillis);
297 TEST_FLOOR_CONVERSION(absl::ToTimeT, absl::FromUnixMillis);
298
299 #undef TEST_FLOOR_CONVERSION
300
301 // Tests ToUnixNanos.
302 EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(3) / 2));
303 EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1)));
304 EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1) / 2));
305 EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::ZeroDuration()));
306 EXPECT_EQ(-1,
307 absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1) / 2));
308 EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1)));
309 EXPECT_EQ(-2,
310 absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(3) / 2));
311
312 // Tests ToUniversal, which uses a different epoch than the tests above.
313 EXPECT_EQ(1,
314 absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(101)));
315 EXPECT_EQ(1,
316 absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(100)));
317 EXPECT_EQ(0,
318 absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(99)));
319 EXPECT_EQ(0,
320 absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(1)));
321 EXPECT_EQ(0,
322 absl::ToUniversal(absl::UniversalEpoch() + absl::ZeroDuration()));
323 EXPECT_EQ(-1,
324 absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-1)));
325 EXPECT_EQ(-1,
326 absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-99)));
327 EXPECT_EQ(
328 -1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-100)));
329 EXPECT_EQ(
330 -2, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-101)));
331
332 // Tests ToTimespec()/TimeFromTimespec()
333 const struct {
334 absl::Time t;
335 timespec ts;
336 } to_ts[] = {
337 {absl::FromUnixSeconds(1) + absl::Nanoseconds(1), {1, 1}},
338 {absl::FromUnixSeconds(1) + absl::Nanoseconds(1) / 2, {1, 0}},
339 {absl::FromUnixSeconds(1) + absl::ZeroDuration(), {1, 0}},
340 {absl::FromUnixSeconds(0) + absl::ZeroDuration(), {0, 0}},
341 {absl::FromUnixSeconds(0) - absl::Nanoseconds(1) / 2, {-1, 999999999}},
342 {absl::FromUnixSeconds(0) - absl::Nanoseconds(1), {-1, 999999999}},
343 {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1), {-1, 1}},
344 {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1) / 2, {-1, 0}},
345 {absl::FromUnixSeconds(-1) + absl::ZeroDuration(), {-1, 0}},
346 {absl::FromUnixSeconds(-1) - absl::Nanoseconds(1) / 2, {-2, 999999999}},
347 };
348 for (const auto& test : to_ts) {
349 EXPECT_THAT(absl::ToTimespec(test.t), TimespecMatcher(test.ts));
350 }
351 const struct {
352 timespec ts;
353 absl::Time t;
354 } from_ts[] = {
355 {{1, 1}, absl::FromUnixSeconds(1) + absl::Nanoseconds(1)},
356 {{1, 0}, absl::FromUnixSeconds(1) + absl::ZeroDuration()},
357 {{0, 0}, absl::FromUnixSeconds(0) + absl::ZeroDuration()},
358 {{0, -1}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)},
359 {{-1, 999999999}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)},
360 {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(1)},
361 {{-1, 0}, absl::FromUnixSeconds(-1) + absl::ZeroDuration()},
362 {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)},
363 {{-2, 999999999}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)},
364 };
365 for (const auto& test : from_ts) {
366 EXPECT_EQ(test.t, absl::TimeFromTimespec(test.ts));
367 }
368
369 // Tests absl::ToTimeval()/TimeFromTimeval() (same as timespec above)
370 const struct {
371 absl::Time t;
372 timeval tv;
373 } to_tv[] = {
374 {absl::FromUnixSeconds(1) + absl::Microseconds(1), {1, 1}},
375 {absl::FromUnixSeconds(1) + absl::Microseconds(1) / 2, {1, 0}},
376 {absl::FromUnixSeconds(1) + absl::ZeroDuration(), {1, 0}},
377 {absl::FromUnixSeconds(0) + absl::ZeroDuration(), {0, 0}},
378 {absl::FromUnixSeconds(0) - absl::Microseconds(1) / 2, {-1, 999999}},
379 {absl::FromUnixSeconds(0) - absl::Microseconds(1), {-1, 999999}},
380 {absl::FromUnixSeconds(-1) + absl::Microseconds(1), {-1, 1}},
381 {absl::FromUnixSeconds(-1) + absl::Microseconds(1) / 2, {-1, 0}},
382 {absl::FromUnixSeconds(-1) + absl::ZeroDuration(), {-1, 0}},
383 {absl::FromUnixSeconds(-1) - absl::Microseconds(1) / 2, {-2, 999999}},
384 };
385 for (const auto& test : to_tv) {
386 EXPECT_THAT(absl::ToTimeval(test.t), TimevalMatcher(test.tv));
387 }
388 const struct {
389 timeval tv;
390 absl::Time t;
391 } from_tv[] = {
392 {{1, 1}, absl::FromUnixSeconds(1) + absl::Microseconds(1)},
393 {{1, 0}, absl::FromUnixSeconds(1) + absl::ZeroDuration()},
394 {{0, 0}, absl::FromUnixSeconds(0) + absl::ZeroDuration()},
395 {{0, -1}, absl::FromUnixSeconds(0) - absl::Microseconds(1)},
396 {{-1, 999999}, absl::FromUnixSeconds(0) - absl::Microseconds(1)},
397 {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Microseconds(1)},
398 {{-1, 0}, absl::FromUnixSeconds(-1) + absl::ZeroDuration()},
399 {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)},
400 {{-2, 999999}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)},
401 };
402 for (const auto& test : from_tv) {
403 EXPECT_EQ(test.t, absl::TimeFromTimeval(test.tv));
404 }
405
406 // Tests flooring near negative infinity.
407 const int64_t min_plus_1 = std::numeric_limits<int64_t>::min() + 1;
408 EXPECT_EQ(min_plus_1, absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1)));
409 EXPECT_EQ(std::numeric_limits<int64_t>::min(),
410 absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1) -
411 absl::Nanoseconds(1) / 2));
412
413 // Tests flooring near positive infinity.
414 EXPECT_EQ(std::numeric_limits<int64_t>::max(),
415 absl::ToUnixSeconds(
416 absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) +
417 absl::Nanoseconds(1) / 2));
418 EXPECT_EQ(std::numeric_limits<int64_t>::max(),
419 absl::ToUnixSeconds(
420 absl::FromUnixSeconds(std::numeric_limits<int64_t>::max())));
421 EXPECT_EQ(std::numeric_limits<int64_t>::max() - 1,
422 absl::ToUnixSeconds(
423 absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) -
424 absl::Nanoseconds(1) / 2));
425 }
426
TEST(Time,RoundtripConversion)427 TEST(Time, RoundtripConversion) {
428 #define TEST_CONVERSION_ROUND_TRIP(SOURCE, FROM, TO, MATCHER) \
429 EXPECT_THAT(TO(FROM(SOURCE)), MATCHER(SOURCE))
430
431 // FromUnixNanos() and ToUnixNanos()
432 int64_t now_ns = absl::GetCurrentTimeNanos();
433 TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixNanos, absl::ToUnixNanos,
434 testing::Eq);
435 TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixNanos, absl::ToUnixNanos,
436 testing::Eq);
437 TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixNanos, absl::ToUnixNanos,
438 testing::Eq);
439 TEST_CONVERSION_ROUND_TRIP(now_ns, absl::FromUnixNanos, absl::ToUnixNanos,
440 testing::Eq)
441 << now_ns;
442
443 // FromUnixMicros() and ToUnixMicros()
444 int64_t now_us = absl::GetCurrentTimeNanos() / 1000;
445 TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMicros, absl::ToUnixMicros,
446 testing::Eq);
447 TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMicros, absl::ToUnixMicros,
448 testing::Eq);
449 TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMicros, absl::ToUnixMicros,
450 testing::Eq);
451 TEST_CONVERSION_ROUND_TRIP(now_us, absl::FromUnixMicros, absl::ToUnixMicros,
452 testing::Eq)
453 << now_us;
454
455 // FromUnixMillis() and ToUnixMillis()
456 int64_t now_ms = absl::GetCurrentTimeNanos() / 1000000;
457 TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMillis, absl::ToUnixMillis,
458 testing::Eq);
459 TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMillis, absl::ToUnixMillis,
460 testing::Eq);
461 TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMillis, absl::ToUnixMillis,
462 testing::Eq);
463 TEST_CONVERSION_ROUND_TRIP(now_ms, absl::FromUnixMillis, absl::ToUnixMillis,
464 testing::Eq)
465 << now_ms;
466
467 // FromUnixSeconds() and ToUnixSeconds()
468 int64_t now_s = std::time(nullptr);
469 TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixSeconds, absl::ToUnixSeconds,
470 testing::Eq);
471 TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixSeconds, absl::ToUnixSeconds,
472 testing::Eq);
473 TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixSeconds, absl::ToUnixSeconds,
474 testing::Eq);
475 TEST_CONVERSION_ROUND_TRIP(now_s, absl::FromUnixSeconds, absl::ToUnixSeconds,
476 testing::Eq)
477 << now_s;
478
479 // FromTimeT() and ToTimeT()
480 time_t now_time_t = std::time(nullptr);
481 TEST_CONVERSION_ROUND_TRIP(-1, absl::FromTimeT, absl::ToTimeT, testing::Eq);
482 TEST_CONVERSION_ROUND_TRIP(0, absl::FromTimeT, absl::ToTimeT, testing::Eq);
483 TEST_CONVERSION_ROUND_TRIP(1, absl::FromTimeT, absl::ToTimeT, testing::Eq);
484 TEST_CONVERSION_ROUND_TRIP(now_time_t, absl::FromTimeT, absl::ToTimeT,
485 testing::Eq)
486 << now_time_t;
487
488 // TimeFromTimeval() and absl::ToTimeval()
489 timeval tv;
490 tv.tv_sec = -1;
491 tv.tv_usec = 0;
492 TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
493 TimevalMatcher);
494 tv.tv_sec = -1;
495 tv.tv_usec = 999999;
496 TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
497 TimevalMatcher);
498 tv.tv_sec = 0;
499 tv.tv_usec = 0;
500 TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
501 TimevalMatcher);
502 tv.tv_sec = 0;
503 tv.tv_usec = 1;
504 TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
505 TimevalMatcher);
506 tv.tv_sec = 1;
507 tv.tv_usec = 0;
508 TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval,
509 TimevalMatcher);
510
511 // TimeFromTimespec() and ToTimespec()
512 timespec ts;
513 ts.tv_sec = -1;
514 ts.tv_nsec = 0;
515 TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
516 TimespecMatcher);
517 ts.tv_sec = -1;
518 ts.tv_nsec = 999999999;
519 TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
520 TimespecMatcher);
521 ts.tv_sec = 0;
522 ts.tv_nsec = 0;
523 TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
524 TimespecMatcher);
525 ts.tv_sec = 0;
526 ts.tv_nsec = 1;
527 TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
528 TimespecMatcher);
529 ts.tv_sec = 1;
530 ts.tv_nsec = 0;
531 TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec,
532 TimespecMatcher);
533
534 // FromUDate() and ToUDate()
535 double now_ud = absl::GetCurrentTimeNanos() / 1000000;
536 TEST_CONVERSION_ROUND_TRIP(-1.5, absl::FromUDate, absl::ToUDate,
537 testing::DoubleEq);
538 TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUDate, absl::ToUDate,
539 testing::DoubleEq);
540 TEST_CONVERSION_ROUND_TRIP(-0.5, absl::FromUDate, absl::ToUDate,
541 testing::DoubleEq);
542 TEST_CONVERSION_ROUND_TRIP(0, absl::FromUDate, absl::ToUDate,
543 testing::DoubleEq);
544 TEST_CONVERSION_ROUND_TRIP(0.5, absl::FromUDate, absl::ToUDate,
545 testing::DoubleEq);
546 TEST_CONVERSION_ROUND_TRIP(1, absl::FromUDate, absl::ToUDate,
547 testing::DoubleEq);
548 TEST_CONVERSION_ROUND_TRIP(1.5, absl::FromUDate, absl::ToUDate,
549 testing::DoubleEq);
550 TEST_CONVERSION_ROUND_TRIP(now_ud, absl::FromUDate, absl::ToUDate,
551 testing::DoubleEq)
552 << std::fixed << std::setprecision(17) << now_ud;
553
554 // FromUniversal() and ToUniversal()
555 int64_t now_uni = ((719162LL * (24 * 60 * 60)) * (1000 * 1000 * 10)) +
556 (absl::GetCurrentTimeNanos() / 100);
557 TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUniversal, absl::ToUniversal,
558 testing::Eq);
559 TEST_CONVERSION_ROUND_TRIP(0, absl::FromUniversal, absl::ToUniversal,
560 testing::Eq);
561 TEST_CONVERSION_ROUND_TRIP(1, absl::FromUniversal, absl::ToUniversal,
562 testing::Eq);
563 TEST_CONVERSION_ROUND_TRIP(now_uni, absl::FromUniversal, absl::ToUniversal,
564 testing::Eq)
565 << now_uni;
566
567 #undef TEST_CONVERSION_ROUND_TRIP
568 }
569
570 template <typename Duration>
MakeChronoUnixTime(const Duration & d)571 std::chrono::system_clock::time_point MakeChronoUnixTime(const Duration& d) {
572 return std::chrono::system_clock::from_time_t(0) + d;
573 }
574
TEST(Time,FromChrono)575 TEST(Time, FromChrono) {
576 EXPECT_EQ(absl::FromTimeT(-1),
577 absl::FromChrono(std::chrono::system_clock::from_time_t(-1)));
578 EXPECT_EQ(absl::FromTimeT(0),
579 absl::FromChrono(std::chrono::system_clock::from_time_t(0)));
580 EXPECT_EQ(absl::FromTimeT(1),
581 absl::FromChrono(std::chrono::system_clock::from_time_t(1)));
582
583 EXPECT_EQ(
584 absl::FromUnixMillis(-1),
585 absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(-1))));
586 EXPECT_EQ(absl::FromUnixMillis(0),
587 absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(0))));
588 EXPECT_EQ(absl::FromUnixMillis(1),
589 absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(1))));
590
591 // Chrono doesn't define exactly its range and precision (neither does
592 // absl::Time), so let's simply test +/- ~100 years to make sure things work.
593 const auto century_sec = 60 * 60 * 24 * 365 * int64_t{100};
594 const auto century = std::chrono::seconds(century_sec);
595 const auto chrono_future = MakeChronoUnixTime(century);
596 const auto chrono_past = MakeChronoUnixTime(-century);
597 EXPECT_EQ(absl::FromUnixSeconds(century_sec),
598 absl::FromChrono(chrono_future));
599 EXPECT_EQ(absl::FromUnixSeconds(-century_sec), absl::FromChrono(chrono_past));
600
601 // Roundtrip them both back to chrono.
602 EXPECT_EQ(chrono_future,
603 absl::ToChronoTime(absl::FromUnixSeconds(century_sec)));
604 EXPECT_EQ(chrono_past,
605 absl::ToChronoTime(absl::FromUnixSeconds(-century_sec)));
606 }
607
TEST(Time,ToChronoTime)608 TEST(Time, ToChronoTime) {
609 EXPECT_EQ(std::chrono::system_clock::from_time_t(-1),
610 absl::ToChronoTime(absl::FromTimeT(-1)));
611 EXPECT_EQ(std::chrono::system_clock::from_time_t(0),
612 absl::ToChronoTime(absl::FromTimeT(0)));
613 EXPECT_EQ(std::chrono::system_clock::from_time_t(1),
614 absl::ToChronoTime(absl::FromTimeT(1)));
615
616 EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(-1)),
617 absl::ToChronoTime(absl::FromUnixMillis(-1)));
618 EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(0)),
619 absl::ToChronoTime(absl::FromUnixMillis(0)));
620 EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(1)),
621 absl::ToChronoTime(absl::FromUnixMillis(1)));
622
623 // Time before the Unix epoch should floor, not trunc.
624 const auto tick = absl::Nanoseconds(1) / 4;
625 EXPECT_EQ(std::chrono::system_clock::from_time_t(0) -
626 std::chrono::system_clock::duration(1),
627 absl::ToChronoTime(absl::UnixEpoch() - tick));
628 }
629
630 // Check that absl::int128 works as a std::chrono::duration representation.
TEST(Time,Chrono128)631 TEST(Time, Chrono128) {
632 // Define a std::chrono::time_point type whose time[sic]_since_epoch() is
633 // a signed 128-bit count of attoseconds. This has a range and resolution
634 // (currently) beyond those of absl::Time, and undoubtedly also beyond those
635 // of std::chrono::system_clock::time_point.
636 //
637 // Note: The to/from-chrono support should probably be updated to handle
638 // such wide representations.
639 using Timestamp =
640 std::chrono::time_point<std::chrono::system_clock,
641 std::chrono::duration<absl::int128, std::atto>>;
642
643 // Expect that we can round-trip the std::chrono::system_clock::time_point
644 // extremes through both absl::Time and Timestamp, and that Timestamp can
645 // handle the (current) absl::Time extremes.
646 //
647 // Note: We should use std::chrono::floor() instead of time_point_cast(),
648 // but floor() is only available since c++17.
649 for (const auto tp : {std::chrono::system_clock::time_point::min(),
650 std::chrono::system_clock::time_point::max()}) {
651 EXPECT_EQ(tp, absl::ToChronoTime(absl::FromChrono(tp)));
652 EXPECT_EQ(tp, std::chrono::time_point_cast<
653 std::chrono::system_clock::time_point::duration>(
654 std::chrono::time_point_cast<Timestamp::duration>(tp)));
655 }
656 Timestamp::duration::rep v = std::numeric_limits<int64_t>::min();
657 v *= Timestamp::duration::period::den;
658 auto ts = Timestamp(Timestamp::duration(v));
659 ts += std::chrono::duration<int64_t, std::atto>(0);
660 EXPECT_EQ(std::numeric_limits<int64_t>::min(),
661 ts.time_since_epoch().count() / Timestamp::duration::period::den);
662 EXPECT_EQ(0,
663 ts.time_since_epoch().count() % Timestamp::duration::period::den);
664 v = std::numeric_limits<int64_t>::max();
665 v *= Timestamp::duration::period::den;
666 ts = Timestamp(Timestamp::duration(v));
667 ts += std::chrono::duration<int64_t, std::atto>(999999999750000000);
668 EXPECT_EQ(std::numeric_limits<int64_t>::max(),
669 ts.time_since_epoch().count() / Timestamp::duration::period::den);
670 EXPECT_EQ(999999999750000000,
671 ts.time_since_epoch().count() % Timestamp::duration::period::den);
672 }
673
TEST(Time,TimeZoneAt)674 TEST(Time, TimeZoneAt) {
675 const absl::TimeZone nyc =
676 absl::time_internal::LoadTimeZone("America/New_York");
677 const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)";
678
679 // A non-transition where the civil time is unique.
680 absl::CivilSecond nov01(2013, 11, 1, 8, 30, 0);
681 const auto nov01_ci = nyc.At(nov01);
682 EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, nov01_ci.kind);
683 EXPECT_EQ("Fri, 1 Nov 2013 08:30:00 -0400 (EDT)",
684 absl::FormatTime(fmt, nov01_ci.pre, nyc));
685 EXPECT_EQ(nov01_ci.pre, nov01_ci.trans);
686 EXPECT_EQ(nov01_ci.pre, nov01_ci.post);
687 EXPECT_EQ(nov01_ci.pre, absl::FromCivil(nov01, nyc));
688
689 // A Spring DST transition, when there is a gap in civil time
690 // and we prefer the later of the possible interpretations of a
691 // non-existent time.
692 absl::CivilSecond mar13(2011, 3, 13, 2, 15, 0);
693 const auto mar_ci = nyc.At(mar13);
694 EXPECT_EQ(absl::TimeZone::TimeInfo::SKIPPED, mar_ci.kind);
695 EXPECT_EQ("Sun, 13 Mar 2011 03:15:00 -0400 (EDT)",
696 absl::FormatTime(fmt, mar_ci.pre, nyc));
697 EXPECT_EQ("Sun, 13 Mar 2011 03:00:00 -0400 (EDT)",
698 absl::FormatTime(fmt, mar_ci.trans, nyc));
699 EXPECT_EQ("Sun, 13 Mar 2011 01:15:00 -0500 (EST)",
700 absl::FormatTime(fmt, mar_ci.post, nyc));
701 EXPECT_EQ(mar_ci.trans, absl::FromCivil(mar13, nyc));
702
703 // A Fall DST transition, when civil times are repeated and
704 // we prefer the earlier of the possible interpretations of an
705 // ambiguous time.
706 absl::CivilSecond nov06(2011, 11, 6, 1, 15, 0);
707 const auto nov06_ci = nyc.At(nov06);
708 EXPECT_EQ(absl::TimeZone::TimeInfo::REPEATED, nov06_ci.kind);
709 EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0400 (EDT)",
710 absl::FormatTime(fmt, nov06_ci.pre, nyc));
711 EXPECT_EQ("Sun, 6 Nov 2011 01:00:00 -0500 (EST)",
712 absl::FormatTime(fmt, nov06_ci.trans, nyc));
713 EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0500 (EST)",
714 absl::FormatTime(fmt, nov06_ci.post, nyc));
715 EXPECT_EQ(nov06_ci.pre, absl::FromCivil(nov06, nyc));
716
717 // Check that (time_t) -1 is handled correctly.
718 absl::CivilSecond minus1(1969, 12, 31, 18, 59, 59);
719 const auto minus1_cl = nyc.At(minus1);
720 EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, minus1_cl.kind);
721 EXPECT_EQ(-1, absl::ToTimeT(minus1_cl.pre));
722 EXPECT_EQ("Wed, 31 Dec 1969 18:59:59 -0500 (EST)",
723 absl::FormatTime(fmt, minus1_cl.pre, nyc));
724 EXPECT_EQ("Wed, 31 Dec 1969 23:59:59 +0000 (UTC)",
725 absl::FormatTime(fmt, minus1_cl.pre, absl::UTCTimeZone()));
726 }
727
728 // FromCivil(CivilSecond(year, mon, day, hour, min, sec), UTCTimeZone())
729 // has a specialized fastpath implementation, which we exercise here.
TEST(Time,FromCivilUTC)730 TEST(Time, FromCivilUTC) {
731 const absl::TimeZone utc = absl::UTCTimeZone();
732 const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)";
733 const int kMax = std::numeric_limits<int>::max();
734 const int kMin = std::numeric_limits<int>::min();
735 absl::Time t;
736
737 // 292091940881 is the last positive year to use the fastpath.
738 t = absl::FromCivil(
739 absl::CivilSecond(292091940881, kMax, kMax, kMax, kMax, kMax), utc);
740 EXPECT_EQ("Fri, 25 Nov 292277026596 12:21:07 +0000 (UTC)",
741 absl::FormatTime(fmt, t, utc));
742 t = absl::FromCivil(
743 absl::CivilSecond(292091940882, kMax, kMax, kMax, kMax, kMax), utc);
744 EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow
745
746 // -292091936940 is the last negative year to use the fastpath.
747 t = absl::FromCivil(
748 absl::CivilSecond(-292091936940, kMin, kMin, kMin, kMin, kMin), utc);
749 EXPECT_EQ("Fri, 1 Nov -292277022657 10:37:52 +0000 (UTC)",
750 absl::FormatTime(fmt, t, utc));
751 t = absl::FromCivil(
752 absl::CivilSecond(-292091936941, kMin, kMin, kMin, kMin, kMin), utc);
753 EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no underflow
754
755 // Check that we're counting leap years correctly.
756 t = absl::FromCivil(absl::CivilSecond(1900, 2, 28, 23, 59, 59), utc);
757 EXPECT_EQ("Wed, 28 Feb 1900 23:59:59 +0000 (UTC)",
758 absl::FormatTime(fmt, t, utc));
759 t = absl::FromCivil(absl::CivilSecond(1900, 3, 1, 0, 0, 0), utc);
760 EXPECT_EQ("Thu, 1 Mar 1900 00:00:00 +0000 (UTC)",
761 absl::FormatTime(fmt, t, utc));
762 t = absl::FromCivil(absl::CivilSecond(2000, 2, 29, 23, 59, 59), utc);
763 EXPECT_EQ("Tue, 29 Feb 2000 23:59:59 +0000 (UTC)",
764 absl::FormatTime(fmt, t, utc));
765 t = absl::FromCivil(absl::CivilSecond(2000, 3, 1, 0, 0, 0), utc);
766 EXPECT_EQ("Wed, 1 Mar 2000 00:00:00 +0000 (UTC)",
767 absl::FormatTime(fmt, t, utc));
768 }
769
TEST(Time,ToTM)770 TEST(Time, ToTM) {
771 const absl::TimeZone utc = absl::UTCTimeZone();
772
773 // Compares the results of absl::ToTM() to gmtime_r() for lots of times over
774 // the course of a few days.
775 const absl::Time start =
776 absl::FromCivil(absl::CivilSecond(2014, 1, 2, 3, 4, 5), utc);
777 const absl::Time end =
778 absl::FromCivil(absl::CivilSecond(2014, 1, 5, 3, 4, 5), utc);
779 for (absl::Time t = start; t < end; t += absl::Seconds(30)) {
780 const struct tm tm_bt = absl::ToTM(t, utc);
781 const time_t tt = absl::ToTimeT(t);
782 struct tm tm_lc;
783 #ifdef _WIN32
784 gmtime_s(&tm_lc, &tt);
785 #else
786 gmtime_r(&tt, &tm_lc);
787 #endif
788 EXPECT_EQ(tm_lc.tm_year, tm_bt.tm_year);
789 EXPECT_EQ(tm_lc.tm_mon, tm_bt.tm_mon);
790 EXPECT_EQ(tm_lc.tm_mday, tm_bt.tm_mday);
791 EXPECT_EQ(tm_lc.tm_hour, tm_bt.tm_hour);
792 EXPECT_EQ(tm_lc.tm_min, tm_bt.tm_min);
793 EXPECT_EQ(tm_lc.tm_sec, tm_bt.tm_sec);
794 EXPECT_EQ(tm_lc.tm_wday, tm_bt.tm_wday);
795 EXPECT_EQ(tm_lc.tm_yday, tm_bt.tm_yday);
796 EXPECT_EQ(tm_lc.tm_isdst, tm_bt.tm_isdst);
797
798 ASSERT_FALSE(HasFailure());
799 }
800
801 // Checks that the tm_isdst field is correct when in standard time.
802 const absl::TimeZone nyc =
803 absl::time_internal::LoadTimeZone("America/New_York");
804 absl::Time t = absl::FromCivil(absl::CivilSecond(2014, 3, 1, 0, 0, 0), nyc);
805 struct tm tm = absl::ToTM(t, nyc);
806 EXPECT_FALSE(tm.tm_isdst);
807
808 // Checks that the tm_isdst field is correct when in daylight time.
809 t = absl::FromCivil(absl::CivilSecond(2014, 4, 1, 0, 0, 0), nyc);
810 tm = absl::ToTM(t, nyc);
811 EXPECT_TRUE(tm.tm_isdst);
812
813 // Checks overflow.
814 tm = absl::ToTM(absl::InfiniteFuture(), nyc);
815 EXPECT_EQ(std::numeric_limits<int>::max() - 1900, tm.tm_year);
816 EXPECT_EQ(11, tm.tm_mon);
817 EXPECT_EQ(31, tm.tm_mday);
818 EXPECT_EQ(23, tm.tm_hour);
819 EXPECT_EQ(59, tm.tm_min);
820 EXPECT_EQ(59, tm.tm_sec);
821 EXPECT_EQ(4, tm.tm_wday);
822 EXPECT_EQ(364, tm.tm_yday);
823 EXPECT_FALSE(tm.tm_isdst);
824
825 // Checks underflow.
826 tm = absl::ToTM(absl::InfinitePast(), nyc);
827 EXPECT_EQ(std::numeric_limits<int>::min(), tm.tm_year);
828 EXPECT_EQ(0, tm.tm_mon);
829 EXPECT_EQ(1, tm.tm_mday);
830 EXPECT_EQ(0, tm.tm_hour);
831 EXPECT_EQ(0, tm.tm_min);
832 EXPECT_EQ(0, tm.tm_sec);
833 EXPECT_EQ(0, tm.tm_wday);
834 EXPECT_EQ(0, tm.tm_yday);
835 EXPECT_FALSE(tm.tm_isdst);
836 }
837
TEST(Time,FromTM)838 TEST(Time, FromTM) {
839 const absl::TimeZone nyc =
840 absl::time_internal::LoadTimeZone("America/New_York");
841
842 // Verifies that tm_isdst doesn't affect anything when the time is unique.
843 struct tm tm;
844 std::memset(&tm, 0, sizeof(tm));
845 tm.tm_year = 2014 - 1900;
846 tm.tm_mon = 6 - 1;
847 tm.tm_mday = 28;
848 tm.tm_hour = 1;
849 tm.tm_min = 2;
850 tm.tm_sec = 3;
851 tm.tm_isdst = -1;
852 absl::Time t = absl::FromTM(tm, nyc);
853 EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
854 tm.tm_isdst = 0;
855 t = absl::FromTM(tm, nyc);
856 EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
857 tm.tm_isdst = 1;
858 t = absl::FromTM(tm, nyc);
859 EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST
860
861 // Adjusts tm to refer to an ambiguous time.
862 tm.tm_year = 2014 - 1900;
863 tm.tm_mon = 11 - 1;
864 tm.tm_mday = 2;
865 tm.tm_hour = 1;
866 tm.tm_min = 30;
867 tm.tm_sec = 42;
868 tm.tm_isdst = -1;
869 t = absl::FromTM(tm, nyc);
870 EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST
871 tm.tm_isdst = 0;
872 t = absl::FromTM(tm, nyc);
873 EXPECT_EQ("2014-11-02T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD
874 tm.tm_isdst = 1;
875 t = absl::FromTM(tm, nyc);
876 EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST
877
878 // Adjusts tm to refer to a skipped time.
879 tm.tm_year = 2014 - 1900;
880 tm.tm_mon = 3 - 1;
881 tm.tm_mday = 9;
882 tm.tm_hour = 2;
883 tm.tm_min = 30;
884 tm.tm_sec = 42;
885 tm.tm_isdst = -1;
886 t = absl::FromTM(tm, nyc);
887 EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST
888 tm.tm_isdst = 0;
889 t = absl::FromTM(tm, nyc);
890 EXPECT_EQ("2014-03-09T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD
891 tm.tm_isdst = 1;
892 t = absl::FromTM(tm, nyc);
893 EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST
894
895 // Adjusts tm to refer to a time with a year larger than 2147483647.
896 tm.tm_year = 2147483647 - 1900 + 1;
897 tm.tm_mon = 6 - 1;
898 tm.tm_mday = 28;
899 tm.tm_hour = 1;
900 tm.tm_min = 2;
901 tm.tm_sec = 3;
902 tm.tm_isdst = -1;
903 t = absl::FromTM(tm, absl::UTCTimeZone());
904 EXPECT_EQ("2147483648-06-28T01:02:03+00:00",
905 absl::FormatTime(t, absl::UTCTimeZone()));
906
907 // Adjusts tm to refer to a time with a very large month.
908 tm.tm_year = 2019 - 1900;
909 tm.tm_mon = 2147483647;
910 tm.tm_mday = 28;
911 tm.tm_hour = 1;
912 tm.tm_min = 2;
913 tm.tm_sec = 3;
914 tm.tm_isdst = -1;
915 t = absl::FromTM(tm, absl::UTCTimeZone());
916 EXPECT_EQ("178958989-08-28T01:02:03+00:00",
917 absl::FormatTime(t, absl::UTCTimeZone()));
918 }
919
TEST(Time,TMRoundTrip)920 TEST(Time, TMRoundTrip) {
921 const absl::TimeZone nyc =
922 absl::time_internal::LoadTimeZone("America/New_York");
923
924 // Test round-tripping across a skipped transition
925 absl::Time start = absl::FromCivil(absl::CivilHour(2014, 3, 9, 0), nyc);
926 absl::Time end = absl::FromCivil(absl::CivilHour(2014, 3, 9, 4), nyc);
927 for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
928 struct tm tm = absl::ToTM(t, nyc);
929 absl::Time rt = absl::FromTM(tm, nyc);
930 EXPECT_EQ(rt, t);
931 }
932
933 // Test round-tripping across an ambiguous transition
934 start = absl::FromCivil(absl::CivilHour(2014, 11, 2, 0), nyc);
935 end = absl::FromCivil(absl::CivilHour(2014, 11, 2, 4), nyc);
936 for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
937 struct tm tm = absl::ToTM(t, nyc);
938 absl::Time rt = absl::FromTM(tm, nyc);
939 EXPECT_EQ(rt, t);
940 }
941
942 // Test round-tripping of unique instants crossing a day boundary
943 start = absl::FromCivil(absl::CivilHour(2014, 6, 27, 22), nyc);
944 end = absl::FromCivil(absl::CivilHour(2014, 6, 28, 4), nyc);
945 for (absl::Time t = start; t < end; t += absl::Minutes(1)) {
946 struct tm tm = absl::ToTM(t, nyc);
947 absl::Time rt = absl::FromTM(tm, nyc);
948 EXPECT_EQ(rt, t);
949 }
950 }
951
TEST(Time,Range)952 TEST(Time, Range) {
953 // The API's documented range is +/- 100 billion years.
954 const absl::Duration range = absl::Hours(24) * 365.2425 * 100000000000;
955
956 // Arithmetic and comparison still works at +/-range around base values.
957 absl::Time bases[2] = {absl::UnixEpoch(), absl::Now()};
958 for (const auto base : bases) {
959 absl::Time bottom = base - range;
960 EXPECT_GT(bottom, bottom - absl::Nanoseconds(1));
961 EXPECT_LT(bottom, bottom + absl::Nanoseconds(1));
962 absl::Time top = base + range;
963 EXPECT_GT(top, top - absl::Nanoseconds(1));
964 EXPECT_LT(top, top + absl::Nanoseconds(1));
965 absl::Duration full_range = 2 * range;
966 EXPECT_EQ(full_range, top - bottom);
967 EXPECT_EQ(-full_range, bottom - top);
968 }
969 }
970
TEST(Time,Limits)971 TEST(Time, Limits) {
972 // It is an implementation detail that Time().rep_ == ZeroDuration(),
973 // and that the resolution of a Duration is 1/4 of a nanosecond.
974 const absl::Time zero;
975 const absl::Time max =
976 zero + absl::Seconds(std::numeric_limits<int64_t>::max()) +
977 absl::Nanoseconds(999999999) + absl::Nanoseconds(3) / 4;
978 const absl::Time min =
979 zero + absl::Seconds(std::numeric_limits<int64_t>::min());
980
981 // Some simple max/min bounds checks.
982 EXPECT_LT(max, absl::InfiniteFuture());
983 EXPECT_GT(min, absl::InfinitePast());
984 EXPECT_LT(zero, max);
985 EXPECT_GT(zero, min);
986 EXPECT_GE(absl::UnixEpoch(), min);
987 EXPECT_LT(absl::UnixEpoch(), max);
988
989 // Check sign of Time differences.
990 EXPECT_LT(absl::ZeroDuration(), max - zero);
991 EXPECT_LT(absl::ZeroDuration(),
992 zero - absl::Nanoseconds(1) / 4 - min); // avoid zero - min
993
994 // Arithmetic works at max - 0.25ns and min + 0.25ns.
995 EXPECT_GT(max, max - absl::Nanoseconds(1) / 4);
996 EXPECT_LT(min, min + absl::Nanoseconds(1) / 4);
997 }
998
TEST(Time,ConversionSaturation)999 TEST(Time, ConversionSaturation) {
1000 const absl::TimeZone utc = absl::UTCTimeZone();
1001 absl::Time t;
1002
1003 const auto max_time_t = std::numeric_limits<time_t>::max();
1004 const auto min_time_t = std::numeric_limits<time_t>::min();
1005 time_t tt = max_time_t - 1;
1006 t = absl::FromTimeT(tt);
1007 tt = absl::ToTimeT(t);
1008 EXPECT_EQ(max_time_t - 1, tt);
1009 t += absl::Seconds(1);
1010 tt = absl::ToTimeT(t);
1011 EXPECT_EQ(max_time_t, tt);
1012 t += absl::Seconds(1); // no effect
1013 tt = absl::ToTimeT(t);
1014 EXPECT_EQ(max_time_t, tt);
1015
1016 tt = min_time_t + 1;
1017 t = absl::FromTimeT(tt);
1018 tt = absl::ToTimeT(t);
1019 EXPECT_EQ(min_time_t + 1, tt);
1020 t -= absl::Seconds(1);
1021 tt = absl::ToTimeT(t);
1022 EXPECT_EQ(min_time_t, tt);
1023 t -= absl::Seconds(1); // no effect
1024 tt = absl::ToTimeT(t);
1025 EXPECT_EQ(min_time_t, tt);
1026
1027 const auto max_timeval_sec =
1028 std::numeric_limits<decltype(timeval::tv_sec)>::max();
1029 const auto min_timeval_sec =
1030 std::numeric_limits<decltype(timeval::tv_sec)>::min();
1031 timeval tv;
1032 tv.tv_sec = max_timeval_sec;
1033 tv.tv_usec = 999998;
1034 t = absl::TimeFromTimeval(tv);
1035 tv = absl::ToTimeval(t);
1036 EXPECT_EQ(max_timeval_sec, tv.tv_sec);
1037 EXPECT_EQ(999998, tv.tv_usec);
1038 t += absl::Microseconds(1);
1039 tv = absl::ToTimeval(t);
1040 EXPECT_EQ(max_timeval_sec, tv.tv_sec);
1041 EXPECT_EQ(999999, tv.tv_usec);
1042 t += absl::Microseconds(1); // no effect
1043 tv = absl::ToTimeval(t);
1044 EXPECT_EQ(max_timeval_sec, tv.tv_sec);
1045 EXPECT_EQ(999999, tv.tv_usec);
1046
1047 tv.tv_sec = min_timeval_sec;
1048 tv.tv_usec = 1;
1049 t = absl::TimeFromTimeval(tv);
1050 tv = absl::ToTimeval(t);
1051 EXPECT_EQ(min_timeval_sec, tv.tv_sec);
1052 EXPECT_EQ(1, tv.tv_usec);
1053 t -= absl::Microseconds(1);
1054 tv = absl::ToTimeval(t);
1055 EXPECT_EQ(min_timeval_sec, tv.tv_sec);
1056 EXPECT_EQ(0, tv.tv_usec);
1057 t -= absl::Microseconds(1); // no effect
1058 tv = absl::ToTimeval(t);
1059 EXPECT_EQ(min_timeval_sec, tv.tv_sec);
1060 EXPECT_EQ(0, tv.tv_usec);
1061
1062 const auto max_timespec_sec =
1063 std::numeric_limits<decltype(timespec::tv_sec)>::max();
1064 const auto min_timespec_sec =
1065 std::numeric_limits<decltype(timespec::tv_sec)>::min();
1066 timespec ts;
1067 ts.tv_sec = max_timespec_sec;
1068 ts.tv_nsec = 999999998;
1069 t = absl::TimeFromTimespec(ts);
1070 ts = absl::ToTimespec(t);
1071 EXPECT_EQ(max_timespec_sec, ts.tv_sec);
1072 EXPECT_EQ(999999998, ts.tv_nsec);
1073 t += absl::Nanoseconds(1);
1074 ts = absl::ToTimespec(t);
1075 EXPECT_EQ(max_timespec_sec, ts.tv_sec);
1076 EXPECT_EQ(999999999, ts.tv_nsec);
1077 t += absl::Nanoseconds(1); // no effect
1078 ts = absl::ToTimespec(t);
1079 EXPECT_EQ(max_timespec_sec, ts.tv_sec);
1080 EXPECT_EQ(999999999, ts.tv_nsec);
1081
1082 ts.tv_sec = min_timespec_sec;
1083 ts.tv_nsec = 1;
1084 t = absl::TimeFromTimespec(ts);
1085 ts = absl::ToTimespec(t);
1086 EXPECT_EQ(min_timespec_sec, ts.tv_sec);
1087 EXPECT_EQ(1, ts.tv_nsec);
1088 t -= absl::Nanoseconds(1);
1089 ts = absl::ToTimespec(t);
1090 EXPECT_EQ(min_timespec_sec, ts.tv_sec);
1091 EXPECT_EQ(0, ts.tv_nsec);
1092 t -= absl::Nanoseconds(1); // no effect
1093 ts = absl::ToTimespec(t);
1094 EXPECT_EQ(min_timespec_sec, ts.tv_sec);
1095 EXPECT_EQ(0, ts.tv_nsec);
1096
1097 // Checks how TimeZone::At() saturates on infinities.
1098 auto ci = utc.At(absl::InfiniteFuture());
1099 EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59,
1100 0, false);
1101 EXPECT_EQ(absl::InfiniteDuration(), ci.subsecond);
1102 EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs));
1103 EXPECT_EQ(365, absl::GetYearDay(ci.cs));
1104 EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At()
1105 ci = utc.At(absl::InfinitePast());
1106 EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::min(), 1, 1, 0, 0, 0, 0,
1107 false);
1108 EXPECT_EQ(-absl::InfiniteDuration(), ci.subsecond);
1109 EXPECT_EQ(absl::Weekday::sunday, absl::GetWeekday(ci.cs));
1110 EXPECT_EQ(1, absl::GetYearDay(ci.cs));
1111 EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At()
1112
1113 // Approach the maximal Time value from below.
1114 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 6), utc);
1115 EXPECT_EQ("292277026596-12-04T15:30:06+00:00",
1116 absl::FormatTime(absl::RFC3339_full, t, utc));
1117 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 7), utc);
1118 EXPECT_EQ("292277026596-12-04T15:30:07+00:00",
1119 absl::FormatTime(absl::RFC3339_full, t, utc));
1120 EXPECT_EQ(
1121 absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()),
1122 t);
1123
1124 // Checks that we can also get the maximal Time value for a far-east zone.
1125 const absl::TimeZone plus14 = absl::FixedTimeZone(14 * 60 * 60);
1126 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 5, 30, 7), plus14);
1127 EXPECT_EQ("292277026596-12-05T05:30:07+14:00",
1128 absl::FormatTime(absl::RFC3339_full, t, plus14));
1129 EXPECT_EQ(
1130 absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()),
1131 t);
1132
1133 // One second later should push us to infinity.
1134 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 8), utc);
1135 EXPECT_EQ("infinite-future", absl::FormatTime(absl::RFC3339_full, t, utc));
1136
1137 // Approach the minimal Time value from above.
1138 t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 53), utc);
1139 EXPECT_EQ("-292277022657-01-27T08:29:53+00:00",
1140 absl::FormatTime(absl::RFC3339_full, t, utc));
1141 t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 52), utc);
1142 EXPECT_EQ("-292277022657-01-27T08:29:52+00:00",
1143 absl::FormatTime(absl::RFC3339_full, t, utc));
1144 EXPECT_EQ(
1145 absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()),
1146 t);
1147
1148 // Checks that we can also get the minimal Time value for a far-west zone.
1149 const absl::TimeZone minus12 = absl::FixedTimeZone(-12 * 60 * 60);
1150 t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 26, 20, 29, 52),
1151 minus12);
1152 EXPECT_EQ("-292277022657-01-26T20:29:52-12:00",
1153 absl::FormatTime(absl::RFC3339_full, t, minus12));
1154 EXPECT_EQ(
1155 absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()),
1156 t);
1157
1158 // One second before should push us to -infinity.
1159 t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 51), utc);
1160 EXPECT_EQ("infinite-past", absl::FormatTime(absl::RFC3339_full, t, utc));
1161 }
1162
1163 // In zones with POSIX-style recurring rules we use special logic to
1164 // handle conversions in the distant future. Here we check the limits
1165 // of those conversions, particularly with respect to integer overflow.
TEST(Time,ExtendedConversionSaturation)1166 TEST(Time, ExtendedConversionSaturation) {
1167 const absl::TimeZone syd =
1168 absl::time_internal::LoadTimeZone("Australia/Sydney");
1169 const absl::TimeZone nyc =
1170 absl::time_internal::LoadTimeZone("America/New_York");
1171 const absl::Time max =
1172 absl::FromUnixSeconds(std::numeric_limits<int64_t>::max());
1173 absl::TimeZone::CivilInfo ci;
1174 absl::Time t;
1175
1176 // The maximal time converted in each zone.
1177 ci = syd.At(max);
1178 EXPECT_CIVIL_INFO(ci, 292277026596, 12, 5, 2, 30, 7, 39600, true);
1179 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 7), syd);
1180 EXPECT_EQ(max, t);
1181 ci = nyc.At(max);
1182 EXPECT_CIVIL_INFO(ci, 292277026596, 12, 4, 10, 30, 7, -18000, false);
1183 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 7), nyc);
1184 EXPECT_EQ(max, t);
1185
1186 // One second later should push us to infinity.
1187 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 8), syd);
1188 EXPECT_EQ(absl::InfiniteFuture(), t);
1189 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 8), nyc);
1190 EXPECT_EQ(absl::InfiniteFuture(), t);
1191
1192 // And we should stick there.
1193 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 9), syd);
1194 EXPECT_EQ(absl::InfiniteFuture(), t);
1195 t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 9), nyc);
1196 EXPECT_EQ(absl::InfiniteFuture(), t);
1197
1198 // All the way up to a saturated date/time, without overflow.
1199 t = absl::FromCivil(absl::CivilSecond::max(), syd);
1200 EXPECT_EQ(absl::InfiniteFuture(), t);
1201 t = absl::FromCivil(absl::CivilSecond::max(), nyc);
1202 EXPECT_EQ(absl::InfiniteFuture(), t);
1203 }
1204
TEST(Time,FromCivilAlignment)1205 TEST(Time, FromCivilAlignment) {
1206 const absl::TimeZone utc = absl::UTCTimeZone();
1207 const absl::CivilSecond cs(2015, 2, 3, 4, 5, 6);
1208 absl::Time t = absl::FromCivil(cs, utc);
1209 EXPECT_EQ("2015-02-03T04:05:06+00:00", absl::FormatTime(t, utc));
1210 t = absl::FromCivil(absl::CivilMinute(cs), utc);
1211 EXPECT_EQ("2015-02-03T04:05:00+00:00", absl::FormatTime(t, utc));
1212 t = absl::FromCivil(absl::CivilHour(cs), utc);
1213 EXPECT_EQ("2015-02-03T04:00:00+00:00", absl::FormatTime(t, utc));
1214 t = absl::FromCivil(absl::CivilDay(cs), utc);
1215 EXPECT_EQ("2015-02-03T00:00:00+00:00", absl::FormatTime(t, utc));
1216 t = absl::FromCivil(absl::CivilMonth(cs), utc);
1217 EXPECT_EQ("2015-02-01T00:00:00+00:00", absl::FormatTime(t, utc));
1218 t = absl::FromCivil(absl::CivilYear(cs), utc);
1219 EXPECT_EQ("2015-01-01T00:00:00+00:00", absl::FormatTime(t, utc));
1220 }
1221
TEST(Time,LegacyDateTime)1222 TEST(Time, LegacyDateTime) {
1223 const absl::TimeZone utc = absl::UTCTimeZone();
1224 const std::string ymdhms = "%Y-%m-%d %H:%M:%S";
1225 const int kMax = std::numeric_limits<int>::max();
1226 const int kMin = std::numeric_limits<int>::min();
1227 absl::Time t;
1228
1229 t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::max(), kMax,
1230 kMax, kMax, kMax, kMax, utc);
1231 EXPECT_EQ("infinite-future",
1232 absl::FormatTime(ymdhms, t, utc)); // no overflow
1233 t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::min(), kMin,
1234 kMin, kMin, kMin, kMin, utc);
1235 EXPECT_EQ("infinite-past", absl::FormatTime(ymdhms, t, utc)); // no overflow
1236
1237 // Check normalization.
1238 EXPECT_TRUE(absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, utc).normalized);
1239 t = absl::FromDateTime(2015, 1, 1, 0, 0, 60, utc);
1240 EXPECT_EQ("2015-01-01 00:01:00", absl::FormatTime(ymdhms, t, utc));
1241 t = absl::FromDateTime(2015, 1, 1, 0, 60, 0, utc);
1242 EXPECT_EQ("2015-01-01 01:00:00", absl::FormatTime(ymdhms, t, utc));
1243 t = absl::FromDateTime(2015, 1, 1, 24, 0, 0, utc);
1244 EXPECT_EQ("2015-01-02 00:00:00", absl::FormatTime(ymdhms, t, utc));
1245 t = absl::FromDateTime(2015, 1, 32, 0, 0, 0, utc);
1246 EXPECT_EQ("2015-02-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
1247 t = absl::FromDateTime(2015, 13, 1, 0, 0, 0, utc);
1248 EXPECT_EQ("2016-01-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
1249 t = absl::FromDateTime(2015, 13, 32, 60, 60, 60, utc);
1250 EXPECT_EQ("2016-02-03 13:01:00", absl::FormatTime(ymdhms, t, utc));
1251 t = absl::FromDateTime(2015, 1, 1, 0, 0, -1, utc);
1252 EXPECT_EQ("2014-12-31 23:59:59", absl::FormatTime(ymdhms, t, utc));
1253 t = absl::FromDateTime(2015, 1, 1, 0, -1, 0, utc);
1254 EXPECT_EQ("2014-12-31 23:59:00", absl::FormatTime(ymdhms, t, utc));
1255 t = absl::FromDateTime(2015, 1, 1, -1, 0, 0, utc);
1256 EXPECT_EQ("2014-12-31 23:00:00", absl::FormatTime(ymdhms, t, utc));
1257 t = absl::FromDateTime(2015, 1, -1, 0, 0, 0, utc);
1258 EXPECT_EQ("2014-12-30 00:00:00", absl::FormatTime(ymdhms, t, utc));
1259 t = absl::FromDateTime(2015, -1, 1, 0, 0, 0, utc);
1260 EXPECT_EQ("2014-11-01 00:00:00", absl::FormatTime(ymdhms, t, utc));
1261 t = absl::FromDateTime(2015, -1, -1, -1, -1, -1, utc);
1262 EXPECT_EQ("2014-10-29 22:58:59", absl::FormatTime(ymdhms, t, utc));
1263 }
1264
TEST(Time,NextTransitionUTC)1265 TEST(Time, NextTransitionUTC) {
1266 const auto tz = absl::UTCTimeZone();
1267 absl::TimeZone::CivilTransition trans;
1268
1269 auto t = absl::InfinitePast();
1270 EXPECT_FALSE(tz.NextTransition(t, &trans));
1271
1272 t = absl::InfiniteFuture();
1273 EXPECT_FALSE(tz.NextTransition(t, &trans));
1274 }
1275
TEST(Time,PrevTransitionUTC)1276 TEST(Time, PrevTransitionUTC) {
1277 const auto tz = absl::UTCTimeZone();
1278 absl::TimeZone::CivilTransition trans;
1279
1280 auto t = absl::InfiniteFuture();
1281 EXPECT_FALSE(tz.PrevTransition(t, &trans));
1282
1283 t = absl::InfinitePast();
1284 EXPECT_FALSE(tz.PrevTransition(t, &trans));
1285 }
1286
TEST(Time,NextTransitionNYC)1287 TEST(Time, NextTransitionNYC) {
1288 const auto tz = absl::time_internal::LoadTimeZone("America/New_York");
1289 absl::TimeZone::CivilTransition trans;
1290
1291 auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz);
1292 EXPECT_TRUE(tz.NextTransition(t, &trans));
1293 EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 2, 0, 0), trans.from);
1294 EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 1, 0, 0), trans.to);
1295
1296 t = absl::InfiniteFuture();
1297 EXPECT_FALSE(tz.NextTransition(t, &trans));
1298
1299 t = absl::InfinitePast();
1300 EXPECT_TRUE(tz.NextTransition(t, &trans));
1301 if (trans.from == absl::CivilSecond(1918, 03, 31, 2, 0, 0)) {
1302 // It looks like the tzdata is only 32 bit (probably macOS),
1303 // which bottoms out at 1901-12-13T20:45:52+00:00.
1304 EXPECT_EQ(absl::CivilSecond(1918, 3, 31, 3, 0, 0), trans.to);
1305 } else {
1306 EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 3, 58), trans.from);
1307 EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 0, 0), trans.to);
1308 }
1309 }
1310
TEST(Time,PrevTransitionNYC)1311 TEST(Time, PrevTransitionNYC) {
1312 const auto tz = absl::time_internal::LoadTimeZone("America/New_York");
1313 absl::TimeZone::CivilTransition trans;
1314
1315 auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz);
1316 EXPECT_TRUE(tz.PrevTransition(t, &trans));
1317 EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 2, 0, 0), trans.from);
1318 EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 3, 0, 0), trans.to);
1319
1320 t = absl::InfinitePast();
1321 EXPECT_FALSE(tz.PrevTransition(t, &trans));
1322
1323 t = absl::InfiniteFuture();
1324 EXPECT_TRUE(tz.PrevTransition(t, &trans));
1325 // We have a transition but we don't know which one.
1326 }
1327
TEST(Time,AbslStringify)1328 TEST(Time, AbslStringify) {
1329 // FormatTime is already well tested, so just use one test case here to
1330 // verify that StrFormat("%v", t) works as expected.
1331 absl::Time t = absl::Now();
1332 EXPECT_EQ(absl::StrFormat("%v", t), absl::FormatTime(t));
1333 }
1334
1335 } // namespace
1336