xref: /aosp_15_r20/external/angle/third_party/abseil-cpp/absl/random/zipf_distribution.h (revision 8975f5c5ed3d1c378011245431ada316dfb6f244)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
16 #define ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
17 
18 #include <cassert>
19 #include <cmath>
20 #include <istream>
21 #include <limits>
22 #include <ostream>
23 #include <type_traits>
24 
25 #include "absl/base/config.h"
26 #include "absl/random/internal/iostream_state_saver.h"
27 #include "absl/random/internal/traits.h"
28 #include "absl/random/uniform_real_distribution.h"
29 
30 namespace absl {
31 ABSL_NAMESPACE_BEGIN
32 
33 // absl::zipf_distribution produces random integer-values in the range [0, k],
34 // distributed according to the unnormalized discrete probability function:
35 //
36 //  P(x) = (v + x) ^ -q
37 //
38 // The parameter `v` must be greater than 0 and the parameter `q` must be
39 // greater than 1. If either of these parameters take invalid values then the
40 // behavior is undefined.
41 //
42 // IntType is the result_type generated by the generator. It must be of integral
43 // type; a static_assert ensures this is the case.
44 //
45 // The implementation is based on W.Hormann, G.Derflinger:
46 //
47 // "Rejection-Inversion to Generate Variates from Monotone Discrete
48 // Distributions"
49 //
50 // http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz
51 //
52 template <typename IntType = int>
53 class zipf_distribution {
54  public:
55   using result_type = IntType;
56 
57   class param_type {
58    public:
59     using distribution_type = zipf_distribution;
60 
61     // Preconditions: k >= 0, v > 0, q > 1
62     // The preconditions are validated when NDEBUG is not defined via
63     // a pair of assert() directives.
64     // If NDEBUG is defined and either or both of these parameters take invalid
65     // values, the behavior of the class is undefined.
66     explicit param_type(result_type k = (std::numeric_limits<IntType>::max)(),
67                         double q = 2.0, double v = 1.0);
68 
k()69     result_type k() const { return k_; }
q()70     double q() const { return q_; }
v()71     double v() const { return v_; }
72 
73     friend bool operator==(const param_type& a, const param_type& b) {
74       return a.k_ == b.k_ && a.q_ == b.q_ && a.v_ == b.v_;
75     }
76     friend bool operator!=(const param_type& a, const param_type& b) {
77       return !(a == b);
78     }
79 
80    private:
81     friend class zipf_distribution;
82     inline double h(double x) const;
83     inline double hinv(double x) const;
84     inline double compute_s() const;
85     inline double pow_negative_q(double x) const;
86 
87     // Parameters here are exactly the same as the parameters of Algorithm ZRI
88     // in the paper.
89     IntType k_;
90     double q_;
91     double v_;
92 
93     double one_minus_q_;  // 1-q
94     double s_;
95     double one_minus_q_inv_;  // 1 / 1-q
96     double hxm_;              // h(k + 0.5)
97     double hx0_minus_hxm_;    // h(x0) - h(k + 0.5)
98 
99     static_assert(random_internal::IsIntegral<IntType>::value,
100                   "Class-template absl::zipf_distribution<> must be "
101                   "parameterized using an integral type.");
102   };
103 
zipf_distribution()104   zipf_distribution()
105       : zipf_distribution((std::numeric_limits<IntType>::max)()) {}
106 
107   explicit zipf_distribution(result_type k, double q = 2.0, double v = 1.0)
param_(k,q,v)108       : param_(k, q, v) {}
109 
zipf_distribution(const param_type & p)110   explicit zipf_distribution(const param_type& p) : param_(p) {}
111 
reset()112   void reset() {}
113 
114   template <typename URBG>
operator()115   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
116     return (*this)(g, param_);
117   }
118 
119   template <typename URBG>
120   result_type operator()(URBG& g,  // NOLINT(runtime/references)
121                          const param_type& p);
122 
k()123   result_type k() const { return param_.k(); }
q()124   double q() const { return param_.q(); }
v()125   double v() const { return param_.v(); }
126 
param()127   param_type param() const { return param_; }
param(const param_type & p)128   void param(const param_type& p) { param_ = p; }
129 
result_type(min)130   result_type(min)() const { return 0; }
result_type(max)131   result_type(max)() const { return k(); }
132 
133   friend bool operator==(const zipf_distribution& a,
134                          const zipf_distribution& b) {
135     return a.param_ == b.param_;
136   }
137   friend bool operator!=(const zipf_distribution& a,
138                          const zipf_distribution& b) {
139     return a.param_ != b.param_;
140   }
141 
142  private:
143   param_type param_;
144 };
145 
146 // --------------------------------------------------------------------------
147 // Implementation details follow
148 // --------------------------------------------------------------------------
149 
150 template <typename IntType>
param_type(typename zipf_distribution<IntType>::result_type k,double q,double v)151 zipf_distribution<IntType>::param_type::param_type(
152     typename zipf_distribution<IntType>::result_type k, double q, double v)
153     : k_(k), q_(q), v_(v), one_minus_q_(1 - q) {
154   assert(q > 1);
155   assert(v > 0);
156   assert(k >= 0);
157   one_minus_q_inv_ = 1 / one_minus_q_;
158 
159   // Setup for the ZRI algorithm (pg 17 of the paper).
160   // Compute: h(i max) => h(k + 0.5)
161   constexpr double kMax = 18446744073709549568.0;
162   double kd = static_cast<double>(k);
163   // TODO(absl-team): Determine if this check is needed, and if so, add a test
164   // that fails for k > kMax
165   if (kd > kMax) {
166     // Ensure that our maximum value is capped to a value which will
167     // round-trip back through double.
168     kd = kMax;
169   }
170   hxm_ = h(kd + 0.5);
171 
172   // Compute: h(0)
173   const bool use_precomputed = (v == 1.0 && q == 2.0);
174   const double h0x5 = use_precomputed ? (-1.0 / 1.5)  // exp(-log(1.5))
175                                       : h(0.5);
176   const double elogv_q = (v_ == 1.0) ? 1 : pow_negative_q(v_);
177 
178   // h(0) = h(0.5) - exp(log(v) * -q)
179   hx0_minus_hxm_ = (h0x5 - elogv_q) - hxm_;
180 
181   // And s
182   s_ = use_precomputed ? 0.46153846153846123 : compute_s();
183 }
184 
185 template <typename IntType>
h(double x)186 double zipf_distribution<IntType>::param_type::h(double x) const {
187   // std::exp(one_minus_q_ * std::log(v_ + x)) * one_minus_q_inv_;
188   x += v_;
189   return (one_minus_q_ == -1.0)
190              ? (-1.0 / x)  // -exp(-log(x))
191              : (std::exp(std::log(x) * one_minus_q_) * one_minus_q_inv_);
192 }
193 
194 template <typename IntType>
hinv(double x)195 double zipf_distribution<IntType>::param_type::hinv(double x) const {
196   // std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)) - v_;
197   return -v_ + ((one_minus_q_ == -1.0)
198                     ? (-1.0 / x)  // exp(-log(-x))
199                     : std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)));
200 }
201 
202 template <typename IntType>
compute_s()203 double zipf_distribution<IntType>::param_type::compute_s() const {
204   // 1 - hinv(h(1.5) - std::exp(std::log(v_ + 1) * -q_));
205   return 1.0 - hinv(h(1.5) - pow_negative_q(v_ + 1.0));
206 }
207 
208 template <typename IntType>
pow_negative_q(double x)209 double zipf_distribution<IntType>::param_type::pow_negative_q(double x) const {
210   // std::exp(std::log(x) * -q_);
211   return q_ == 2.0 ? (1.0 / (x * x)) : std::exp(std::log(x) * -q_);
212 }
213 
214 template <typename IntType>
215 template <typename URBG>
216 typename zipf_distribution<IntType>::result_type
operator()217 zipf_distribution<IntType>::operator()(
218     URBG& g, const param_type& p) {  // NOLINT(runtime/references)
219   absl::uniform_real_distribution<double> uniform_double;
220   double k;
221   for (;;) {
222     const double v = uniform_double(g);
223     const double u = p.hxm_ + v * p.hx0_minus_hxm_;
224     const double x = p.hinv(u);
225     k = rint(x);                                   // std::floor(x + 0.5);
226     if (k > static_cast<double>(p.k())) continue;  // reject k > max_k
227     if (k - x <= p.s_) break;
228     const double h = p.h(k + 0.5);
229     const double r = p.pow_negative_q(p.v_ + k);
230     if (u >= h - r) break;
231   }
232   IntType ki = static_cast<IntType>(k);
233   assert(ki <= p.k_);
234   return ki;
235 }
236 
237 template <typename CharT, typename Traits, typename IntType>
238 std::basic_ostream<CharT, Traits>& operator<<(
239     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
240     const zipf_distribution<IntType>& x) {
241   using stream_type =
242       typename random_internal::stream_format_type<IntType>::type;
243   auto saver = random_internal::make_ostream_state_saver(os);
244   os.precision(random_internal::stream_precision_helper<double>::kPrecision);
245   os << static_cast<stream_type>(x.k()) << os.fill() << x.q() << os.fill()
246      << x.v();
247   return os;
248 }
249 
250 template <typename CharT, typename Traits, typename IntType>
251 std::basic_istream<CharT, Traits>& operator>>(
252     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
253     zipf_distribution<IntType>& x) {        // NOLINT(runtime/references)
254   using result_type = typename zipf_distribution<IntType>::result_type;
255   using param_type = typename zipf_distribution<IntType>::param_type;
256   using stream_type =
257       typename random_internal::stream_format_type<IntType>::type;
258   stream_type k;
259   double q;
260   double v;
261 
262   auto saver = random_internal::make_istream_state_saver(is);
263   is >> k >> q >> v;
264   if (!is.fail()) {
265     x.param(param_type(static_cast<result_type>(k), q, v));
266   }
267   return is;
268 }
269 
270 ABSL_NAMESPACE_END
271 }  // namespace absl
272 
273 #endif  // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
274