1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_
16 #define ABSL_RANDOM_BETA_DISTRIBUTION_H_
17
18 #include <cassert>
19 #include <cmath>
20 #include <cstdint>
21 #include <istream>
22 #include <limits>
23 #include <ostream>
24 #include <type_traits>
25
26 #include "absl/base/attributes.h"
27 #include "absl/base/config.h"
28 #include "absl/meta/type_traits.h"
29 #include "absl/random/internal/fast_uniform_bits.h"
30 #include "absl/random/internal/generate_real.h"
31 #include "absl/random/internal/iostream_state_saver.h"
32
33 namespace absl {
34 ABSL_NAMESPACE_BEGIN
35
36 // absl::beta_distribution:
37 // Generate a floating-point variate conforming to a Beta distribution:
38 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
39 // where the params alpha and beta are both strictly positive real values.
40 //
41 // The support is the open interval (0, 1), but the return value might be equal
42 // to 0 or 1, due to numerical errors when alpha and beta are very different.
43 //
44 // Usage note: One usage is that alpha and beta are counts of number of
45 // successes and failures. When the total number of trials are large, consider
46 // approximating a beta distribution with a Gaussian distribution with the same
47 // mean and variance. One could use the skewness, which depends only on the
48 // smaller of alpha and beta when the number of trials are sufficiently large,
49 // to quantify how far a beta distribution is from the normal distribution.
50 template <typename RealType = double>
51 class beta_distribution {
52 public:
53 using result_type = RealType;
54
55 class param_type {
56 public:
57 using distribution_type = beta_distribution;
58
param_type(result_type alpha,result_type beta)59 explicit param_type(result_type alpha, result_type beta)
60 : alpha_(alpha), beta_(beta) {
61 assert(alpha >= 0);
62 assert(beta >= 0);
63 assert(alpha <= (std::numeric_limits<result_type>::max)());
64 assert(beta <= (std::numeric_limits<result_type>::max)());
65 if (alpha == 0 || beta == 0) {
66 method_ = DEGENERATE_SMALL;
67 x_ = (alpha >= beta) ? 1 : 0;
68 return;
69 }
70 // a_ = min(beta, alpha), b_ = max(beta, alpha).
71 if (beta < alpha) {
72 inverted_ = true;
73 a_ = beta;
74 b_ = alpha;
75 } else {
76 inverted_ = false;
77 a_ = alpha;
78 b_ = beta;
79 }
80 if (a_ <= 1 && b_ >= ThresholdForLargeA()) {
81 method_ = DEGENERATE_SMALL;
82 x_ = inverted_ ? result_type(1) : result_type(0);
83 return;
84 }
85 // For threshold values, see also:
86 // Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al.
87 // February, 2009.
88 if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) {
89 // Choose Joehnk over Cheng when it's faster or when Cheng encounters
90 // numerical issues.
91 method_ = JOEHNK;
92 a_ = result_type(1) / alpha_;
93 b_ = result_type(1) / beta_;
94 if (std::isinf(a_) || std::isinf(b_)) {
95 method_ = DEGENERATE_SMALL;
96 x_ = inverted_ ? result_type(1) : result_type(0);
97 }
98 return;
99 }
100 if (a_ >= ThresholdForLargeA()) {
101 method_ = DEGENERATE_LARGE;
102 // Note: on PPC for long double, evaluating
103 // `std::numeric_limits::max() / ThresholdForLargeA` results in NaN.
104 result_type r = a_ / b_;
105 x_ = (inverted_ ? result_type(1) : r) / (1 + r);
106 return;
107 }
108 x_ = a_ + b_;
109 log_x_ = std::log(x_);
110 if (a_ <= 1) {
111 method_ = CHENG_BA;
112 y_ = result_type(1) / a_;
113 gamma_ = a_ + a_;
114 return;
115 }
116 method_ = CHENG_BB;
117 result_type r = (a_ - 1) / (b_ - 1);
118 y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1));
119 gamma_ = a_ + result_type(1) / y_;
120 }
121
alpha()122 result_type alpha() const { return alpha_; }
beta()123 result_type beta() const { return beta_; }
124
125 friend bool operator==(const param_type& a, const param_type& b) {
126 return a.alpha_ == b.alpha_ && a.beta_ == b.beta_;
127 }
128
129 friend bool operator!=(const param_type& a, const param_type& b) {
130 return !(a == b);
131 }
132
133 private:
134 friend class beta_distribution;
135
136 #ifdef _MSC_VER
137 // MSVC does not have constexpr implementations for std::log and std::exp
138 // so they are computed at runtime.
139 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
140 #else
141 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr
142 #endif
143
144 // The threshold for whether std::exp(1/a) is finite.
145 // Note that this value is quite large, and a smaller a_ is NOT abnormal.
146 static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
ThresholdForSmallA()147 ThresholdForSmallA() {
148 return result_type(1) /
149 std::log((std::numeric_limits<result_type>::max)());
150 }
151
152 // The threshold for whether a * std::log(a) is finite.
153 static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
ThresholdForLargeA()154 ThresholdForLargeA() {
155 return std::exp(
156 std::log((std::numeric_limits<result_type>::max)()) -
157 std::log(std::log((std::numeric_limits<result_type>::max)())) -
158 ThresholdPadding());
159 }
160
161 #undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
162
163 // Pad the threshold for large A for long double on PPC. This is done via a
164 // template specialization below.
ThresholdPadding()165 static constexpr result_type ThresholdPadding() { return 0; }
166
167 enum Method {
168 JOEHNK, // Uses algorithm Joehnk
169 CHENG_BA, // Uses algorithm BA in Cheng
170 CHENG_BB, // Uses algorithm BB in Cheng
171
172 // Note: See also:
173 // Hung et al. Evaluation of beta generation algorithms. Communications
174 // in Statistics-Simulation and Computation 38.4 (2009): 750-770.
175 // especially:
176 // Zechner, Heinz, and Ernst Stadlober. Generating beta variates via
177 // patchwork rejection. Computing 50.1 (1993): 1-18.
178
179 DEGENERATE_SMALL, // a_ is abnormally small.
180 DEGENERATE_LARGE, // a_ is abnormally large.
181 };
182
183 result_type alpha_;
184 result_type beta_;
185
186 result_type a_{}; // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK
187 result_type b_{}; // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK
188 result_type x_{}; // alpha + beta, or the result in degenerate cases
189 result_type log_x_{}; // log(x_)
190 result_type y_{}; // "beta" in Cheng
191 result_type gamma_{}; // "gamma" in Cheng
192
193 Method method_{};
194
195 // Placing this last for optimal alignment.
196 // Whether alpha_ != a_, i.e. true iff alpha_ > beta_.
197 bool inverted_{};
198
199 static_assert(std::is_floating_point<RealType>::value,
200 "Class-template absl::beta_distribution<> must be "
201 "parameterized using a floating-point type.");
202 };
203
beta_distribution()204 beta_distribution() : beta_distribution(1) {}
205
206 explicit beta_distribution(result_type alpha, result_type beta = 1)
param_(alpha,beta)207 : param_(alpha, beta) {}
208
beta_distribution(const param_type & p)209 explicit beta_distribution(const param_type& p) : param_(p) {}
210
reset()211 void reset() {}
212
213 // Generating functions
214 template <typename URBG>
operator()215 result_type operator()(URBG& g) { // NOLINT(runtime/references)
216 return (*this)(g, param_);
217 }
218
219 template <typename URBG>
220 result_type operator()(URBG& g, // NOLINT(runtime/references)
221 const param_type& p);
222
param()223 param_type param() const { return param_; }
param(const param_type & p)224 void param(const param_type& p) { param_ = p; }
225
result_type(min)226 result_type(min)() const { return 0; }
result_type(max)227 result_type(max)() const { return 1; }
228
alpha()229 result_type alpha() const { return param_.alpha(); }
beta()230 result_type beta() const { return param_.beta(); }
231
232 friend bool operator==(const beta_distribution& a,
233 const beta_distribution& b) {
234 return a.param_ == b.param_;
235 }
236 friend bool operator!=(const beta_distribution& a,
237 const beta_distribution& b) {
238 return a.param_ != b.param_;
239 }
240
241 private:
242 template <typename URBG>
243 result_type AlgorithmJoehnk(URBG& g, // NOLINT(runtime/references)
244 const param_type& p);
245
246 template <typename URBG>
247 result_type AlgorithmCheng(URBG& g, // NOLINT(runtime/references)
248 const param_type& p);
249
250 template <typename URBG>
DegenerateCase(URBG & g,const param_type & p)251 result_type DegenerateCase(URBG& g, // NOLINT(runtime/references)
252 const param_type& p) {
253 if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) {
254 // Returns 0 or 1 with equal probability.
255 random_internal::FastUniformBits<uint8_t> fast_u8;
256 return static_cast<result_type>((fast_u8(g) & 0x10) !=
257 0); // pick any single bit.
258 }
259 return p.x_;
260 }
261
262 param_type param_;
263 random_internal::FastUniformBits<uint64_t> fast_u64_;
264 };
265
266 #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
267 defined(__ppc__) || defined(__PPC__)
268 // PPC needs a more stringent boundary for long double.
269 template <>
270 constexpr long double
ThresholdPadding()271 beta_distribution<long double>::param_type::ThresholdPadding() {
272 return 10;
273 }
274 #endif
275
276 template <typename RealType>
277 template <typename URBG>
278 typename beta_distribution<RealType>::result_type
AlgorithmJoehnk(URBG & g,const param_type & p)279 beta_distribution<RealType>::AlgorithmJoehnk(
280 URBG& g, // NOLINT(runtime/references)
281 const param_type& p) {
282 using random_internal::GeneratePositiveTag;
283 using random_internal::GenerateRealFromBits;
284 using real_type =
285 absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
286
287 // Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten
288 // Zufallszahlen. Metrika 8.1 (1964): 5-15.
289 // This method is described in Knuth, Vol 2 (Third Edition), pp 134.
290
291 result_type u, v, x, y, z;
292 for (;;) {
293 u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
294 fast_u64_(g));
295 v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
296 fast_u64_(g));
297
298 // Direct method. std::pow is slow for float, so rely on the optimizer to
299 // remove the std::pow() path for that case.
300 if (!std::is_same<float, result_type>::value) {
301 x = std::pow(u, p.a_);
302 y = std::pow(v, p.b_);
303 z = x + y;
304 if (z > 1) {
305 // Reject if and only if `x + y > 1.0`
306 continue;
307 }
308 if (z > 0) {
309 // When both alpha and beta are small, x and y are both close to 0, so
310 // divide by (x+y) directly may result in nan.
311 return x / z;
312 }
313 }
314
315 // Log transform.
316 // x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) )
317 // since u, v <= 1.0, x, y < 0.
318 x = std::log(u) * p.a_;
319 y = std::log(v) * p.b_;
320 if (!std::isfinite(x) || !std::isfinite(y)) {
321 continue;
322 }
323 // z = log( pow(u, a) + pow(v, b) )
324 z = x > y ? (x + std::log(1 + std::exp(y - x)))
325 : (y + std::log(1 + std::exp(x - y)));
326 // Reject iff log(x+y) > 0.
327 if (z > 0) {
328 continue;
329 }
330 return std::exp(x - z);
331 }
332 }
333
334 template <typename RealType>
335 template <typename URBG>
336 typename beta_distribution<RealType>::result_type
AlgorithmCheng(URBG & g,const param_type & p)337 beta_distribution<RealType>::AlgorithmCheng(
338 URBG& g, // NOLINT(runtime/references)
339 const param_type& p) {
340 using random_internal::GeneratePositiveTag;
341 using random_internal::GenerateRealFromBits;
342 using real_type =
343 absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
344
345 // Based on Cheng, Russell CH. Generating beta variates with nonintegral
346 // shape parameters. Communications of the ACM 21.4 (1978): 317-322.
347 // (https://dl.acm.org/citation.cfm?id=359482).
348 static constexpr result_type kLogFour =
349 result_type(1.3862943611198906188344642429163531361); // log(4)
350 static constexpr result_type kS =
351 result_type(2.6094379124341003746007593332261876); // 1+log(5)
352
353 const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);
354 result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;
355 for (;;) {
356 u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
357 fast_u64_(g));
358 u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
359 fast_u64_(g));
360 v = p.y_ * std::log(u1 / (1 - u1));
361 w = p.a_ * std::exp(v);
362 bw_inv = result_type(1) / (p.b_ + w);
363 r = p.gamma_ * v - kLogFour;
364 s = p.a_ + r - w;
365 z = u1 * u1 * u2;
366 if (!use_algorithm_ba && s + kS >= 5 * z) {
367 break;
368 }
369 t = std::log(z);
370 if (!use_algorithm_ba && s >= t) {
371 break;
372 }
373 lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r;
374 if (lhs >= t) {
375 break;
376 }
377 }
378 return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv;
379 }
380
381 template <typename RealType>
382 template <typename URBG>
383 typename beta_distribution<RealType>::result_type
operator()384 beta_distribution<RealType>::operator()(URBG& g, // NOLINT(runtime/references)
385 const param_type& p) {
386 switch (p.method_) {
387 case param_type::JOEHNK:
388 return AlgorithmJoehnk(g, p);
389 case param_type::CHENG_BA:
390 ABSL_FALLTHROUGH_INTENDED;
391 case param_type::CHENG_BB:
392 return AlgorithmCheng(g, p);
393 default:
394 return DegenerateCase(g, p);
395 }
396 }
397
398 template <typename CharT, typename Traits, typename RealType>
399 std::basic_ostream<CharT, Traits>& operator<<(
400 std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
401 const beta_distribution<RealType>& x) {
402 auto saver = random_internal::make_ostream_state_saver(os);
403 os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
404 os << x.alpha() << os.fill() << x.beta();
405 return os;
406 }
407
408 template <typename CharT, typename Traits, typename RealType>
409 std::basic_istream<CharT, Traits>& operator>>(
410 std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
411 beta_distribution<RealType>& x) { // NOLINT(runtime/references)
412 using result_type = typename beta_distribution<RealType>::result_type;
413 using param_type = typename beta_distribution<RealType>::param_type;
414 result_type alpha, beta;
415
416 auto saver = random_internal::make_istream_state_saver(is);
417 alpha = random_internal::read_floating_point<result_type>(is);
418 if (is.fail()) return is;
419 beta = random_internal::read_floating_point<result_type>(is);
420 if (!is.fail()) {
421 x.param(param_type(alpha, beta));
422 }
423 return is;
424 }
425
426 ABSL_NAMESPACE_END
427 } // namespace absl
428
429 #endif // ABSL_RANDOM_BETA_DISTRIBUTION_H_
430