xref: /aosp_15_r20/external/angle/third_party/abseil-cpp/absl/random/beta_distribution.h (revision 8975f5c5ed3d1c378011245431ada316dfb6f244)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_
16 #define ABSL_RANDOM_BETA_DISTRIBUTION_H_
17 
18 #include <cassert>
19 #include <cmath>
20 #include <cstdint>
21 #include <istream>
22 #include <limits>
23 #include <ostream>
24 #include <type_traits>
25 
26 #include "absl/base/attributes.h"
27 #include "absl/base/config.h"
28 #include "absl/meta/type_traits.h"
29 #include "absl/random/internal/fast_uniform_bits.h"
30 #include "absl/random/internal/generate_real.h"
31 #include "absl/random/internal/iostream_state_saver.h"
32 
33 namespace absl {
34 ABSL_NAMESPACE_BEGIN
35 
36 // absl::beta_distribution:
37 // Generate a floating-point variate conforming to a Beta distribution:
38 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
39 // where the params alpha and beta are both strictly positive real values.
40 //
41 // The support is the open interval (0, 1), but the return value might be equal
42 // to 0 or 1, due to numerical errors when alpha and beta are very different.
43 //
44 // Usage note: One usage is that alpha and beta are counts of number of
45 // successes and failures. When the total number of trials are large, consider
46 // approximating a beta distribution with a Gaussian distribution with the same
47 // mean and variance. One could use the skewness, which depends only on the
48 // smaller of alpha and beta when the number of trials are sufficiently large,
49 // to quantify how far a beta distribution is from the normal distribution.
50 template <typename RealType = double>
51 class beta_distribution {
52  public:
53   using result_type = RealType;
54 
55   class param_type {
56    public:
57     using distribution_type = beta_distribution;
58 
param_type(result_type alpha,result_type beta)59     explicit param_type(result_type alpha, result_type beta)
60         : alpha_(alpha), beta_(beta) {
61       assert(alpha >= 0);
62       assert(beta >= 0);
63       assert(alpha <= (std::numeric_limits<result_type>::max)());
64       assert(beta <= (std::numeric_limits<result_type>::max)());
65       if (alpha == 0 || beta == 0) {
66         method_ = DEGENERATE_SMALL;
67         x_ = (alpha >= beta) ? 1 : 0;
68         return;
69       }
70       // a_ = min(beta, alpha), b_ = max(beta, alpha).
71       if (beta < alpha) {
72         inverted_ = true;
73         a_ = beta;
74         b_ = alpha;
75       } else {
76         inverted_ = false;
77         a_ = alpha;
78         b_ = beta;
79       }
80       if (a_ <= 1 && b_ >= ThresholdForLargeA()) {
81         method_ = DEGENERATE_SMALL;
82         x_ = inverted_ ? result_type(1) : result_type(0);
83         return;
84       }
85       // For threshold values, see also:
86       // Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al.
87       // February, 2009.
88       if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) {
89         // Choose Joehnk over Cheng when it's faster or when Cheng encounters
90         // numerical issues.
91         method_ = JOEHNK;
92         a_ = result_type(1) / alpha_;
93         b_ = result_type(1) / beta_;
94         if (std::isinf(a_) || std::isinf(b_)) {
95           method_ = DEGENERATE_SMALL;
96           x_ = inverted_ ? result_type(1) : result_type(0);
97         }
98         return;
99       }
100       if (a_ >= ThresholdForLargeA()) {
101         method_ = DEGENERATE_LARGE;
102         // Note: on PPC for long double, evaluating
103         // `std::numeric_limits::max() / ThresholdForLargeA` results in NaN.
104         result_type r = a_ / b_;
105         x_ = (inverted_ ? result_type(1) : r) / (1 + r);
106         return;
107       }
108       x_ = a_ + b_;
109       log_x_ = std::log(x_);
110       if (a_ <= 1) {
111         method_ = CHENG_BA;
112         y_ = result_type(1) / a_;
113         gamma_ = a_ + a_;
114         return;
115       }
116       method_ = CHENG_BB;
117       result_type r = (a_ - 1) / (b_ - 1);
118       y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1));
119       gamma_ = a_ + result_type(1) / y_;
120     }
121 
alpha()122     result_type alpha() const { return alpha_; }
beta()123     result_type beta() const { return beta_; }
124 
125     friend bool operator==(const param_type& a, const param_type& b) {
126       return a.alpha_ == b.alpha_ && a.beta_ == b.beta_;
127     }
128 
129     friend bool operator!=(const param_type& a, const param_type& b) {
130       return !(a == b);
131     }
132 
133    private:
134     friend class beta_distribution;
135 
136 #ifdef _MSC_VER
137     // MSVC does not have constexpr implementations for std::log and std::exp
138     // so they are computed at runtime.
139 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
140 #else
141 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr
142 #endif
143 
144     // The threshold for whether std::exp(1/a) is finite.
145     // Note that this value is quite large, and a smaller a_ is NOT abnormal.
146     static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
ThresholdForSmallA()147     ThresholdForSmallA() {
148       return result_type(1) /
149              std::log((std::numeric_limits<result_type>::max)());
150     }
151 
152     // The threshold for whether a * std::log(a) is finite.
153     static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
ThresholdForLargeA()154     ThresholdForLargeA() {
155       return std::exp(
156           std::log((std::numeric_limits<result_type>::max)()) -
157           std::log(std::log((std::numeric_limits<result_type>::max)())) -
158           ThresholdPadding());
159     }
160 
161 #undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
162 
163     // Pad the threshold for large A for long double on PPC. This is done via a
164     // template specialization below.
ThresholdPadding()165     static constexpr result_type ThresholdPadding() { return 0; }
166 
167     enum Method {
168       JOEHNK,    // Uses algorithm Joehnk
169       CHENG_BA,  // Uses algorithm BA in Cheng
170       CHENG_BB,  // Uses algorithm BB in Cheng
171 
172       // Note: See also:
173       //   Hung et al. Evaluation of beta generation algorithms. Communications
174       //   in Statistics-Simulation and Computation 38.4 (2009): 750-770.
175       // especially:
176       //   Zechner, Heinz, and Ernst Stadlober. Generating beta variates via
177       //   patchwork rejection. Computing 50.1 (1993): 1-18.
178 
179       DEGENERATE_SMALL,  // a_ is abnormally small.
180       DEGENERATE_LARGE,  // a_ is abnormally large.
181     };
182 
183     result_type alpha_;
184     result_type beta_;
185 
186     result_type a_{};  // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK
187     result_type b_{};  // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK
188     result_type x_{};  // alpha + beta, or the result in degenerate cases
189     result_type log_x_{};  // log(x_)
190     result_type y_{};      // "beta" in Cheng
191     result_type gamma_{};  // "gamma" in Cheng
192 
193     Method method_{};
194 
195     // Placing this last for optimal alignment.
196     // Whether alpha_ != a_, i.e. true iff alpha_ > beta_.
197     bool inverted_{};
198 
199     static_assert(std::is_floating_point<RealType>::value,
200                   "Class-template absl::beta_distribution<> must be "
201                   "parameterized using a floating-point type.");
202   };
203 
beta_distribution()204   beta_distribution() : beta_distribution(1) {}
205 
206   explicit beta_distribution(result_type alpha, result_type beta = 1)
param_(alpha,beta)207       : param_(alpha, beta) {}
208 
beta_distribution(const param_type & p)209   explicit beta_distribution(const param_type& p) : param_(p) {}
210 
reset()211   void reset() {}
212 
213   // Generating functions
214   template <typename URBG>
operator()215   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
216     return (*this)(g, param_);
217   }
218 
219   template <typename URBG>
220   result_type operator()(URBG& g,  // NOLINT(runtime/references)
221                          const param_type& p);
222 
param()223   param_type param() const { return param_; }
param(const param_type & p)224   void param(const param_type& p) { param_ = p; }
225 
result_type(min)226   result_type(min)() const { return 0; }
result_type(max)227   result_type(max)() const { return 1; }
228 
alpha()229   result_type alpha() const { return param_.alpha(); }
beta()230   result_type beta() const { return param_.beta(); }
231 
232   friend bool operator==(const beta_distribution& a,
233                          const beta_distribution& b) {
234     return a.param_ == b.param_;
235   }
236   friend bool operator!=(const beta_distribution& a,
237                          const beta_distribution& b) {
238     return a.param_ != b.param_;
239   }
240 
241  private:
242   template <typename URBG>
243   result_type AlgorithmJoehnk(URBG& g,  // NOLINT(runtime/references)
244                               const param_type& p);
245 
246   template <typename URBG>
247   result_type AlgorithmCheng(URBG& g,  // NOLINT(runtime/references)
248                              const param_type& p);
249 
250   template <typename URBG>
DegenerateCase(URBG & g,const param_type & p)251   result_type DegenerateCase(URBG& g,  // NOLINT(runtime/references)
252                              const param_type& p) {
253     if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) {
254       // Returns 0 or 1 with equal probability.
255       random_internal::FastUniformBits<uint8_t> fast_u8;
256       return static_cast<result_type>((fast_u8(g) & 0x10) !=
257                                       0);  // pick any single bit.
258     }
259     return p.x_;
260   }
261 
262   param_type param_;
263   random_internal::FastUniformBits<uint64_t> fast_u64_;
264 };
265 
266 #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
267     defined(__ppc__) || defined(__PPC__)
268 // PPC needs a more stringent boundary for long double.
269 template <>
270 constexpr long double
ThresholdPadding()271 beta_distribution<long double>::param_type::ThresholdPadding() {
272   return 10;
273 }
274 #endif
275 
276 template <typename RealType>
277 template <typename URBG>
278 typename beta_distribution<RealType>::result_type
AlgorithmJoehnk(URBG & g,const param_type & p)279 beta_distribution<RealType>::AlgorithmJoehnk(
280     URBG& g,  // NOLINT(runtime/references)
281     const param_type& p) {
282   using random_internal::GeneratePositiveTag;
283   using random_internal::GenerateRealFromBits;
284   using real_type =
285       absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
286 
287   // Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten
288   // Zufallszahlen. Metrika 8.1 (1964): 5-15.
289   // This method is described in Knuth, Vol 2 (Third Edition), pp 134.
290 
291   result_type u, v, x, y, z;
292   for (;;) {
293     u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
294         fast_u64_(g));
295     v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
296         fast_u64_(g));
297 
298     // Direct method. std::pow is slow for float, so rely on the optimizer to
299     // remove the std::pow() path for that case.
300     if (!std::is_same<float, result_type>::value) {
301       x = std::pow(u, p.a_);
302       y = std::pow(v, p.b_);
303       z = x + y;
304       if (z > 1) {
305         // Reject if and only if `x + y > 1.0`
306         continue;
307       }
308       if (z > 0) {
309         // When both alpha and beta are small, x and y are both close to 0, so
310         // divide by (x+y) directly may result in nan.
311         return x / z;
312       }
313     }
314 
315     // Log transform.
316     // x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) )
317     // since u, v <= 1.0,  x, y < 0.
318     x = std::log(u) * p.a_;
319     y = std::log(v) * p.b_;
320     if (!std::isfinite(x) || !std::isfinite(y)) {
321       continue;
322     }
323     // z = log( pow(u, a) + pow(v, b) )
324     z = x > y ? (x + std::log(1 + std::exp(y - x)))
325               : (y + std::log(1 + std::exp(x - y)));
326     // Reject iff log(x+y) > 0.
327     if (z > 0) {
328       continue;
329     }
330     return std::exp(x - z);
331   }
332 }
333 
334 template <typename RealType>
335 template <typename URBG>
336 typename beta_distribution<RealType>::result_type
AlgorithmCheng(URBG & g,const param_type & p)337 beta_distribution<RealType>::AlgorithmCheng(
338     URBG& g,  // NOLINT(runtime/references)
339     const param_type& p) {
340   using random_internal::GeneratePositiveTag;
341   using random_internal::GenerateRealFromBits;
342   using real_type =
343       absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
344 
345   // Based on Cheng, Russell CH. Generating beta variates with nonintegral
346   // shape parameters. Communications of the ACM 21.4 (1978): 317-322.
347   // (https://dl.acm.org/citation.cfm?id=359482).
348   static constexpr result_type kLogFour =
349       result_type(1.3862943611198906188344642429163531361);  // log(4)
350   static constexpr result_type kS =
351       result_type(2.6094379124341003746007593332261876);  // 1+log(5)
352 
353   const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);
354   result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;
355   for (;;) {
356     u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
357         fast_u64_(g));
358     u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
359         fast_u64_(g));
360     v = p.y_ * std::log(u1 / (1 - u1));
361     w = p.a_ * std::exp(v);
362     bw_inv = result_type(1) / (p.b_ + w);
363     r = p.gamma_ * v - kLogFour;
364     s = p.a_ + r - w;
365     z = u1 * u1 * u2;
366     if (!use_algorithm_ba && s + kS >= 5 * z) {
367       break;
368     }
369     t = std::log(z);
370     if (!use_algorithm_ba && s >= t) {
371       break;
372     }
373     lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r;
374     if (lhs >= t) {
375       break;
376     }
377   }
378   return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv;
379 }
380 
381 template <typename RealType>
382 template <typename URBG>
383 typename beta_distribution<RealType>::result_type
operator()384 beta_distribution<RealType>::operator()(URBG& g,  // NOLINT(runtime/references)
385                                         const param_type& p) {
386   switch (p.method_) {
387     case param_type::JOEHNK:
388       return AlgorithmJoehnk(g, p);
389     case param_type::CHENG_BA:
390       ABSL_FALLTHROUGH_INTENDED;
391     case param_type::CHENG_BB:
392       return AlgorithmCheng(g, p);
393     default:
394       return DegenerateCase(g, p);
395   }
396 }
397 
398 template <typename CharT, typename Traits, typename RealType>
399 std::basic_ostream<CharT, Traits>& operator<<(
400     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
401     const beta_distribution<RealType>& x) {
402   auto saver = random_internal::make_ostream_state_saver(os);
403   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
404   os << x.alpha() << os.fill() << x.beta();
405   return os;
406 }
407 
408 template <typename CharT, typename Traits, typename RealType>
409 std::basic_istream<CharT, Traits>& operator>>(
410     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
411     beta_distribution<RealType>& x) {       // NOLINT(runtime/references)
412   using result_type = typename beta_distribution<RealType>::result_type;
413   using param_type = typename beta_distribution<RealType>::param_type;
414   result_type alpha, beta;
415 
416   auto saver = random_internal::make_istream_state_saver(is);
417   alpha = random_internal::read_floating_point<result_type>(is);
418   if (is.fail()) return is;
419   beta = random_internal::read_floating_point<result_type>(is);
420   if (!is.fail()) {
421     x.param(param_type(alpha, beta));
422   }
423   return is;
424 }
425 
426 ABSL_NAMESPACE_END
427 }  // namespace absl
428 
429 #endif  // ABSL_RANDOM_BETA_DISTRIBUTION_H_
430