xref: /aosp_15_r20/external/angle/third_party/abseil-cpp/absl/base/optimization.h (revision 8975f5c5ed3d1c378011245431ada316dfb6f244)
1 //
2 // Copyright 2017 The Abseil Authors.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 // -----------------------------------------------------------------------------
17 // File: optimization.h
18 // -----------------------------------------------------------------------------
19 //
20 // This header file defines portable macros for performance optimization.
21 //
22 // This header is included in both C++ code and legacy C code and thus must
23 // remain compatible with both C and C++. C compatibility will be removed if
24 // the legacy code is removed or converted to C++. Do not include this header in
25 // new code that requires C compatibility or assume C compatibility will remain
26 // indefinitely.
27 
28 #ifndef ABSL_BASE_OPTIMIZATION_H_
29 #define ABSL_BASE_OPTIMIZATION_H_
30 
31 #include <assert.h>
32 
33 #ifdef __cplusplus
34 // Included for std::unreachable()
35 #include <utility>
36 #endif  // __cplusplus
37 
38 #include "absl/base/config.h"
39 #include "absl/base/options.h"
40 
41 // ABSL_BLOCK_TAIL_CALL_OPTIMIZATION
42 //
43 // Instructs the compiler to avoid optimizing tail-call recursion. This macro is
44 // useful when you wish to preserve the existing function order within a stack
45 // trace for logging, debugging, or profiling purposes.
46 //
47 // Example:
48 //
49 //   int f() {
50 //     int result = g();
51 //     ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
52 //     return result;
53 //   }
54 #if defined(__pnacl__)
55 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
56 #elif defined(__clang__)
57 // Clang will not tail call given inline volatile assembly.
58 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
59 #elif defined(__GNUC__)
60 // GCC will not tail call given inline volatile assembly.
61 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
62 #elif defined(_MSC_VER)
63 #include <intrin.h>
64 // The __nop() intrinsic blocks the optimisation.
65 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
66 #else
67 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
68 #endif
69 
70 // ABSL_CACHELINE_SIZE
71 //
72 // Explicitly defines the size of the L1 cache for purposes of alignment.
73 // Setting the cacheline size allows you to specify that certain objects be
74 // aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations.
75 // (See below.)
76 //
77 // NOTE: this macro should be replaced with the following C++17 features, when
78 // those are generally available:
79 //
80 //   * `std::hardware_constructive_interference_size`
81 //   * `std::hardware_destructive_interference_size`
82 //
83 // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
84 // for more information.
85 #if defined(__GNUC__)
86 // Cache line alignment
87 #if defined(__i386__) || defined(__x86_64__)
88 #define ABSL_CACHELINE_SIZE 64
89 #elif defined(__powerpc64__)
90 #define ABSL_CACHELINE_SIZE 128
91 #elif defined(__aarch64__)
92 // We would need to read special register ctr_el0 to find out L1 dcache size.
93 // This value is a good estimate based on a real aarch64 machine.
94 #define ABSL_CACHELINE_SIZE 64
95 #elif defined(__arm__)
96 // Cache line sizes for ARM: These values are not strictly correct since
97 // cache line sizes depend on implementations, not architectures.  There
98 // are even implementations with cache line sizes configurable at boot
99 // time.
100 #if defined(__ARM_ARCH_5T__)
101 #define ABSL_CACHELINE_SIZE 32
102 #elif defined(__ARM_ARCH_7A__)
103 #define ABSL_CACHELINE_SIZE 64
104 #endif
105 #endif
106 #endif
107 
108 #ifndef ABSL_CACHELINE_SIZE
109 // A reasonable default guess.  Note that overestimates tend to waste more
110 // space, while underestimates tend to waste more time.
111 #define ABSL_CACHELINE_SIZE 64
112 #endif
113 
114 // ABSL_CACHELINE_ALIGNED
115 //
116 // Indicates that the declared object be cache aligned using
117 // `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to
118 // load a set of related objects in the L1 cache for performance improvements.
119 // Cacheline aligning objects properly allows constructive memory sharing and
120 // prevents destructive (or "false") memory sharing.
121 //
122 // NOTE: callers should replace uses of this macro with `alignas()` using
123 // `std::hardware_constructive_interference_size` and/or
124 // `std::hardware_destructive_interference_size` when C++17 becomes available to
125 // them.
126 //
127 // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
128 // for more information.
129 //
130 // On some compilers, `ABSL_CACHELINE_ALIGNED` expands to an `__attribute__`
131 // or `__declspec` attribute. For compilers where this is not known to work,
132 // the macro expands to nothing.
133 //
134 // No further guarantees are made here. The result of applying the macro
135 // to variables and types is always implementation-defined.
136 //
137 // WARNING: It is easy to use this attribute incorrectly, even to the point
138 // of causing bugs that are difficult to diagnose, crash, etc. It does not
139 // of itself guarantee that objects are aligned to a cache line.
140 //
141 // NOTE: Some compilers are picky about the locations of annotations such as
142 // this attribute, so prefer to put it at the beginning of your declaration.
143 // For example,
144 //
145 //   ABSL_CACHELINE_ALIGNED static Foo* foo = ...
146 //
147 //   class ABSL_CACHELINE_ALIGNED Bar { ...
148 //
149 // Recommendations:
150 //
151 // 1) Consult compiler documentation; this comment is not kept in sync as
152 //    toolchains evolve.
153 // 2) Verify your use has the intended effect. This often requires inspecting
154 //    the generated machine code.
155 // 3) Prefer applying this attribute to individual variables. Avoid
156 //    applying it to types. This tends to localize the effect.
157 #if defined(__clang__) || defined(__GNUC__)
158 #define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE)))
159 #elif defined(_MSC_VER)
160 #define ABSL_CACHELINE_ALIGNED __declspec(align(ABSL_CACHELINE_SIZE))
161 #else
162 #define ABSL_CACHELINE_ALIGNED
163 #endif
164 
165 // ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE
166 //
167 // Enables the compiler to prioritize compilation using static analysis for
168 // likely paths within a boolean branch.
169 //
170 // Example:
171 //
172 //   if (ABSL_PREDICT_TRUE(expression)) {
173 //     return result;                        // Faster if more likely
174 //   } else {
175 //     return 0;
176 //   }
177 //
178 // Compilers can use the information that a certain branch is not likely to be
179 // taken (for instance, a CHECK failure) to optimize for the common case in
180 // the absence of better information (ie. compiling gcc with `-fprofile-arcs`).
181 //
182 // Recommendation: Modern CPUs dynamically predict branch execution paths,
183 // typically with accuracy greater than 97%. As a result, annotating every
184 // branch in a codebase is likely counterproductive; however, annotating
185 // specific branches that are both hot and consistently mispredicted is likely
186 // to yield performance improvements.
187 #if ABSL_HAVE_BUILTIN(__builtin_expect) || \
188     (defined(__GNUC__) && !defined(__clang__))
189 #define ABSL_PREDICT_FALSE(x) (__builtin_expect(false || (x), false))
190 #define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true))
191 #else
192 #define ABSL_PREDICT_FALSE(x) (x)
193 #define ABSL_PREDICT_TRUE(x) (x)
194 #endif
195 
196 // `ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL()` aborts the program in the fastest
197 // possible way, with no attempt at logging. One use is to implement hardening
198 // aborts with ABSL_OPTION_HARDENED.  Since this is an internal symbol, it
199 // should not be used directly outside of Abseil.
200 #if ABSL_HAVE_BUILTIN(__builtin_trap) || \
201     (defined(__GNUC__) && !defined(__clang__))
202 #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() __builtin_trap()
203 #else
204 #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() abort()
205 #endif
206 
207 // `ABSL_INTERNAL_UNREACHABLE_IMPL()` is the platform specific directive to
208 // indicate that a statement is unreachable, and to allow the compiler to
209 // optimize accordingly. Clients should use `ABSL_UNREACHABLE()`, which is
210 // defined below.
211 #if defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
212 #define ABSL_INTERNAL_UNREACHABLE_IMPL() std::unreachable()
213 #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable)
214 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_unreachable()
215 #elif ABSL_HAVE_BUILTIN(__builtin_assume)
216 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_assume(false)
217 #elif defined(_MSC_VER)
218 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __assume(false)
219 #else
220 #define ABSL_INTERNAL_UNREACHABLE_IMPL()
221 #endif
222 
223 // `ABSL_UNREACHABLE()` is an unreachable statement.  A program which reaches
224 // one has undefined behavior, and the compiler may optimize accordingly.
225 #if ABSL_OPTION_HARDENED == 1 && defined(NDEBUG)
226 // Abort in hardened mode to avoid dangerous undefined behavior.
227 #define ABSL_UNREACHABLE()                \
228   do {                                    \
229     ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL(); \
230     ABSL_INTERNAL_UNREACHABLE_IMPL();     \
231   } while (false)
232 #else
233 // The assert only fires in debug mode to aid in debugging.
234 // When NDEBUG is defined, reaching ABSL_UNREACHABLE() is undefined behavior.
235 #define ABSL_UNREACHABLE()                       \
236   do {                                           \
237     /* NOLINTNEXTLINE: misc-static-assert */     \
238     assert(false && "ABSL_UNREACHABLE reached"); \
239     ABSL_INTERNAL_UNREACHABLE_IMPL();            \
240   } while (false)
241 #endif
242 
243 // ABSL_ASSUME(cond)
244 //
245 // Informs the compiler that a condition is always true and that it can assume
246 // it to be true for optimization purposes.
247 //
248 // WARNING: If the condition is false, the program can produce undefined and
249 // potentially dangerous behavior.
250 //
251 // In !NDEBUG mode, the condition is checked with an assert().
252 //
253 // NOTE: The expression must not have side effects, as it may only be evaluated
254 // in some compilation modes and not others. Some compilers may issue a warning
255 // if the compiler cannot prove the expression has no side effects. For example,
256 // the expression should not use a function call since the compiler cannot prove
257 // that a function call does not have side effects.
258 //
259 // Example:
260 //
261 //   int x = ...;
262 //   ABSL_ASSUME(x >= 0);
263 //   // The compiler can optimize the division to a simple right shift using the
264 //   // assumption specified above.
265 //   int y = x / 16;
266 //
267 #if !defined(NDEBUG)
268 #define ABSL_ASSUME(cond) assert(cond)
269 #elif ABSL_HAVE_BUILTIN(__builtin_assume)
270 #define ABSL_ASSUME(cond) __builtin_assume(cond)
271 #elif defined(_MSC_VER)
272 #define ABSL_ASSUME(cond) __assume(cond)
273 #elif defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
274 #define ABSL_ASSUME(cond)            \
275   do {                               \
276     if (!(cond)) std::unreachable(); \
277   } while (false)
278 #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable)
279 #define ABSL_ASSUME(cond)                 \
280   do {                                    \
281     if (!(cond)) __builtin_unreachable(); \
282   } while (false)
283 #else
284 #define ABSL_ASSUME(cond)               \
285   do {                                  \
286     static_cast<void>(false && (cond)); \
287   } while (false)
288 #endif
289 
290 // ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond)
291 // This macro forces small unique name on a static file level symbols like
292 // static local variables or static functions. This is intended to be used in
293 // macro definitions to optimize the cost of generated code. Do NOT use it on
294 // symbols exported from translation unit since it may cause a link time
295 // conflict.
296 //
297 // Example:
298 //
299 // #define MY_MACRO(txt)
300 // namespace {
301 //  char VeryVeryLongVarName[] ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt;
302 //  const char* VeryVeryLongFuncName() ABSL_INTERNAL_UNIQUE_SMALL_NAME();
303 //  const char* VeryVeryLongFuncName() { return txt; }
304 // }
305 //
306 
307 #if defined(__GNUC__)
308 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x
309 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x)
310 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME() \
311   asm(ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.absl.__COUNTER__))
312 #else
313 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME()
314 #endif
315 
316 #endif  // ABSL_BASE_OPTIMIZATION_H_
317