xref: /aosp_15_r20/external/abseil-cpp/absl/synchronization/mutex.cc (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/synchronization/mutex.h"
16 
17 #ifdef _WIN32
18 #include <windows.h>
19 #ifdef ERROR
20 #undef ERROR
21 #endif
22 #else
23 #include <fcntl.h>
24 #include <pthread.h>
25 #include <sched.h>
26 #include <sys/time.h>
27 #endif
28 
29 #include <assert.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35 
36 #include <algorithm>
37 #include <atomic>
38 #include <cstddef>
39 #include <cstdlib>
40 #include <cstring>
41 #include <thread>  // NOLINT(build/c++11)
42 
43 #include "absl/base/attributes.h"
44 #include "absl/base/call_once.h"
45 #include "absl/base/config.h"
46 #include "absl/base/dynamic_annotations.h"
47 #include "absl/base/internal/atomic_hook.h"
48 #include "absl/base/internal/cycleclock.h"
49 #include "absl/base/internal/hide_ptr.h"
50 #include "absl/base/internal/low_level_alloc.h"
51 #include "absl/base/internal/raw_logging.h"
52 #include "absl/base/internal/spinlock.h"
53 #include "absl/base/internal/sysinfo.h"
54 #include "absl/base/internal/thread_identity.h"
55 #include "absl/base/internal/tsan_mutex_interface.h"
56 #include "absl/base/optimization.h"
57 #include "absl/debugging/stacktrace.h"
58 #include "absl/debugging/symbolize.h"
59 #include "absl/synchronization/internal/graphcycles.h"
60 #include "absl/synchronization/internal/per_thread_sem.h"
61 #include "absl/time/time.h"
62 
63 using absl::base_internal::CurrentThreadIdentityIfPresent;
64 using absl::base_internal::CycleClock;
65 using absl::base_internal::PerThreadSynch;
66 using absl::base_internal::SchedulingGuard;
67 using absl::base_internal::ThreadIdentity;
68 using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
69 using absl::synchronization_internal::GraphCycles;
70 using absl::synchronization_internal::GraphId;
71 using absl::synchronization_internal::InvalidGraphId;
72 using absl::synchronization_internal::KernelTimeout;
73 using absl::synchronization_internal::PerThreadSem;
74 
75 extern "C" {
ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)76 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)() {
77   std::this_thread::yield();
78 }
79 }  // extern "C"
80 
81 namespace absl {
82 ABSL_NAMESPACE_BEGIN
83 
84 namespace {
85 
86 #if defined(ABSL_HAVE_THREAD_SANITIZER)
87 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
88 #else
89 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
90 #endif
91 
92 ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
93     kDeadlockDetectionDefault);
94 ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
95 
96 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
97 absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
98     submit_profile_data;
99 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
100     const char* msg, const void* obj, int64_t wait_cycles)>
101     mutex_tracer;
102 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
103 absl::base_internal::AtomicHook<void (*)(const char* msg, const void* cv)>
104     cond_var_tracer;
105 
106 }  // namespace
107 
108 static inline bool EvalConditionAnnotated(const Condition* cond, Mutex* mu,
109                                           bool locking, bool trylock,
110                                           bool read_lock);
111 
RegisterMutexProfiler(void (* fn)(int64_t wait_cycles))112 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)) {
113   submit_profile_data.Store(fn);
114 }
115 
RegisterMutexTracer(void (* fn)(const char * msg,const void * obj,int64_t wait_cycles))116 void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
117                                     int64_t wait_cycles)) {
118   mutex_tracer.Store(fn);
119 }
120 
RegisterCondVarTracer(void (* fn)(const char * msg,const void * cv))121 void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv)) {
122   cond_var_tracer.Store(fn);
123 }
124 
125 namespace {
126 // Represents the strategy for spin and yield.
127 // See the comment in GetMutexGlobals() for more information.
128 enum DelayMode { AGGRESSIVE, GENTLE };
129 
130 struct ABSL_CACHELINE_ALIGNED MutexGlobals {
131   absl::once_flag once;
132   // Note: this variable is initialized separately in Mutex::LockSlow,
133   // so that Mutex::Lock does not have a stack frame in optimized build.
134   std::atomic<int> spinloop_iterations{0};
135   int32_t mutex_sleep_spins[2] = {};
136   absl::Duration mutex_sleep_time;
137 };
138 
139 ABSL_CONST_INIT static MutexGlobals globals;
140 
MeasureTimeToYield()141 absl::Duration MeasureTimeToYield() {
142   absl::Time before = absl::Now();
143   ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
144   return absl::Now() - before;
145 }
146 
GetMutexGlobals()147 const MutexGlobals& GetMutexGlobals() {
148   absl::base_internal::LowLevelCallOnce(&globals.once, [&]() {
149     if (absl::base_internal::NumCPUs() > 1) {
150       // If the mode is aggressive then spin many times before yielding.
151       // If the mode is gentle then spin only a few times before yielding.
152       // Aggressive spinning is used to ensure that an Unlock() call,
153       // which must get the spin lock for any thread to make progress gets it
154       // without undue delay.
155       globals.mutex_sleep_spins[AGGRESSIVE] = 5000;
156       globals.mutex_sleep_spins[GENTLE] = 250;
157       globals.mutex_sleep_time = absl::Microseconds(10);
158     } else {
159       // If this a uniprocessor, only yield/sleep. Real-time threads are often
160       // unable to yield, so the sleep time needs to be long enough to keep
161       // the calling thread asleep until scheduling happens.
162       globals.mutex_sleep_spins[AGGRESSIVE] = 0;
163       globals.mutex_sleep_spins[GENTLE] = 0;
164       globals.mutex_sleep_time = MeasureTimeToYield() * 5;
165       globals.mutex_sleep_time =
166           std::min(globals.mutex_sleep_time, absl::Milliseconds(1));
167       globals.mutex_sleep_time =
168           std::max(globals.mutex_sleep_time, absl::Microseconds(10));
169     }
170   });
171   return globals;
172 }
173 }  // namespace
174 
175 namespace synchronization_internal {
176 // Returns the Mutex delay on iteration `c` depending on the given `mode`.
177 // The returned value should be used as `c` for the next call to `MutexDelay`.
MutexDelay(int32_t c,int mode)178 int MutexDelay(int32_t c, int mode) {
179   const int32_t limit = GetMutexGlobals().mutex_sleep_spins[mode];
180   const absl::Duration sleep_time = GetMutexGlobals().mutex_sleep_time;
181   if (c < limit) {
182     // Spin.
183     c++;
184   } else {
185     SchedulingGuard::ScopedEnable enable_rescheduling;
186     ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
187     if (c == limit) {
188       // Yield once.
189       ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
190       c++;
191     } else {
192       // Then wait.
193       absl::SleepFor(sleep_time);
194       c = 0;
195     }
196     ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
197   }
198   return c;
199 }
200 }  // namespace synchronization_internal
201 
202 // --------------------------Generic atomic ops
203 // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
204 // "*pv | bits" if necessary.  Wait until (*pv & wait_until_clear)==0
205 // before making any change.
206 // Returns true if bits were previously unset and set by the call.
207 // This is used to set flags in mutex and condition variable words.
AtomicSetBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)208 static bool AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
209                           intptr_t wait_until_clear) {
210   for (;;) {
211     intptr_t v = pv->load(std::memory_order_relaxed);
212     if ((v & bits) == bits) {
213       return false;
214     }
215     if ((v & wait_until_clear) != 0) {
216       continue;
217     }
218     if (pv->compare_exchange_weak(v, v | bits, std::memory_order_release,
219                                   std::memory_order_relaxed)) {
220       return true;
221     }
222   }
223 }
224 
225 //------------------------------------------------------------------
226 
227 // Data for doing deadlock detection.
228 ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu(
229     absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
230 
231 // Graph used to detect deadlocks.
232 ABSL_CONST_INIT static GraphCycles* deadlock_graph
233     ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu);
234 
235 //------------------------------------------------------------------
236 // An event mechanism for debugging mutex use.
237 // It also allows mutexes to be given names for those who can't handle
238 // addresses, and instead like to give their data structures names like
239 // "Henry", "Fido", or "Rupert IV, King of Yondavia".
240 
241 namespace {  // to prevent name pollution
242 enum {       // Mutex and CondVar events passed as "ev" to PostSynchEvent
243              // Mutex events
244   SYNCH_EV_TRYLOCK_SUCCESS,
245   SYNCH_EV_TRYLOCK_FAILED,
246   SYNCH_EV_READERTRYLOCK_SUCCESS,
247   SYNCH_EV_READERTRYLOCK_FAILED,
248   SYNCH_EV_LOCK,
249   SYNCH_EV_LOCK_RETURNING,
250   SYNCH_EV_READERLOCK,
251   SYNCH_EV_READERLOCK_RETURNING,
252   SYNCH_EV_UNLOCK,
253   SYNCH_EV_READERUNLOCK,
254 
255   // CondVar events
256   SYNCH_EV_WAIT,
257   SYNCH_EV_WAIT_RETURNING,
258   SYNCH_EV_SIGNAL,
259   SYNCH_EV_SIGNALALL,
260 };
261 
262 enum {                    // Event flags
263   SYNCH_F_R = 0x01,       // reader event
264   SYNCH_F_LCK = 0x02,     // PostSynchEvent called with mutex held
265   SYNCH_F_TRY = 0x04,     // TryLock or ReaderTryLock
266   SYNCH_F_UNLOCK = 0x08,  // Unlock or ReaderUnlock
267 
268   SYNCH_F_LCK_W = SYNCH_F_LCK,
269   SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
270 };
271 }  // anonymous namespace
272 
273 // Properties of the events.
274 static const struct {
275   int flags;
276   const char* msg;
277 } event_properties[] = {
278     {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
279     {0, "TryLock failed "},
280     {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
281     {0, "ReaderTryLock failed "},
282     {0, "Lock blocking "},
283     {SYNCH_F_LCK_W, "Lock returning "},
284     {0, "ReaderLock blocking "},
285     {SYNCH_F_LCK_R, "ReaderLock returning "},
286     {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
287     {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
288     {0, "Wait on "},
289     {0, "Wait unblocked "},
290     {0, "Signal on "},
291     {0, "SignalAll on "},
292 };
293 
294 ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu(
295     absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
296 
297 // Hash table size; should be prime > 2.
298 // Can't be too small, as it's used for deadlock detection information.
299 static constexpr uint32_t kNSynchEvent = 1031;
300 
301 static struct SynchEvent {  // this is a trivial hash table for the events
302   // struct is freed when refcount reaches 0
303   int refcount ABSL_GUARDED_BY(synch_event_mu);
304 
305   // buckets have linear, 0-terminated  chains
306   SynchEvent* next ABSL_GUARDED_BY(synch_event_mu);
307 
308   // Constant after initialization
309   uintptr_t masked_addr;  // object at this address is called "name"
310 
311   // No explicit synchronization used.  Instead we assume that the
312   // client who enables/disables invariants/logging on a Mutex does so
313   // while the Mutex is not being concurrently accessed by others.
314   void (*invariant)(void* arg);  // called on each event
315   void* arg;                     // first arg to (*invariant)()
316   bool log;                      // logging turned on
317 
318   // Constant after initialization
319   char name[1];  // actually longer---NUL-terminated string
320 }* synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
321 
322 // Ensure that the object at "addr" has a SynchEvent struct associated with it,
323 // set "bits" in the word there (waiting until lockbit is clear before doing
324 // so), and return a refcounted reference that will remain valid until
325 // UnrefSynchEvent() is called.  If a new SynchEvent is allocated,
326 // the string name is copied into it.
327 // When used with a mutex, the caller should also ensure that kMuEvent
328 // is set in the mutex word, and similarly for condition variables and kCVEvent.
EnsureSynchEvent(std::atomic<intptr_t> * addr,const char * name,intptr_t bits,intptr_t lockbit)329 static SynchEvent* EnsureSynchEvent(std::atomic<intptr_t>* addr,
330                                     const char* name, intptr_t bits,
331                                     intptr_t lockbit) {
332   uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent;
333   synch_event_mu.Lock();
334   // When a Mutex/CondVar is destroyed, we don't remove the associated
335   // SynchEvent to keep destructors empty in release builds for performance
336   // reasons. If the current call is the first to set bits (kMuEvent/kCVEvent),
337   // we don't look up the existing even because (if it exists, it must be for
338   // the previous Mutex/CondVar that existed at the same address).
339   // The leaking events must not be a problem for tests, which should create
340   // bounded amount of events. And debug logging is not supposed to be enabled
341   // in production. However, if it's accidentally enabled, or briefly enabled
342   // for some debugging, we don't want to crash the program. Instead we drop
343   // all events, if we accumulated too many of them. Size of a single event
344   // is ~48 bytes, so 100K events is ~5 MB.
345   // Additionally we could delete the old event for the same address,
346   // but it would require a better hashmap (if we accumulate too many events,
347   // linked lists will grow and traversing them will be very slow).
348   constexpr size_t kMaxSynchEventCount = 100 << 10;
349   // Total number of live synch events.
350   static size_t synch_event_count ABSL_GUARDED_BY(synch_event_mu);
351   if (++synch_event_count > kMaxSynchEventCount) {
352     synch_event_count = 0;
353     ABSL_RAW_LOG(ERROR,
354                  "Accumulated %zu Mutex debug objects. If you see this"
355                  " in production, it may mean that the production code"
356                  " accidentally calls "
357                  "Mutex/CondVar::EnableDebugLog/EnableInvariantDebugging.",
358                  kMaxSynchEventCount);
359     for (auto*& head : synch_event) {
360       for (auto* e = head; e != nullptr;) {
361         SynchEvent* next = e->next;
362         if (--(e->refcount) == 0) {
363           base_internal::LowLevelAlloc::Free(e);
364         }
365         e = next;
366       }
367       head = nullptr;
368     }
369   }
370   SynchEvent* e = nullptr;
371   if (!AtomicSetBits(addr, bits, lockbit)) {
372     for (e = synch_event[h];
373          e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
374          e = e->next) {
375     }
376   }
377   if (e == nullptr) {  // no SynchEvent struct found; make one.
378     if (name == nullptr) {
379       name = "";
380     }
381     size_t l = strlen(name);
382     e = reinterpret_cast<SynchEvent*>(
383         base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
384     e->refcount = 2;  // one for return value, one for linked list
385     e->masked_addr = base_internal::HidePtr(addr);
386     e->invariant = nullptr;
387     e->arg = nullptr;
388     e->log = false;
389     strcpy(e->name, name);  // NOLINT(runtime/printf)
390     e->next = synch_event[h];
391     synch_event[h] = e;
392   } else {
393     e->refcount++;  // for return value
394   }
395   synch_event_mu.Unlock();
396   return e;
397 }
398 
399 // Decrement the reference count of *e, or do nothing if e==null.
UnrefSynchEvent(SynchEvent * e)400 static void UnrefSynchEvent(SynchEvent* e) {
401   if (e != nullptr) {
402     synch_event_mu.Lock();
403     bool del = (--(e->refcount) == 0);
404     synch_event_mu.Unlock();
405     if (del) {
406       base_internal::LowLevelAlloc::Free(e);
407     }
408   }
409 }
410 
411 // Return a refcounted reference to the SynchEvent of the object at address
412 // "addr", if any.  The pointer returned is valid until the UnrefSynchEvent() is
413 // called.
GetSynchEvent(const void * addr)414 static SynchEvent* GetSynchEvent(const void* addr) {
415   uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent;
416   SynchEvent* e;
417   synch_event_mu.Lock();
418   for (e = synch_event[h];
419        e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
420        e = e->next) {
421   }
422   if (e != nullptr) {
423     e->refcount++;
424   }
425   synch_event_mu.Unlock();
426   return e;
427 }
428 
429 // Called when an event "ev" occurs on a Mutex of CondVar "obj"
430 // if event recording is on
PostSynchEvent(void * obj,int ev)431 static void PostSynchEvent(void* obj, int ev) {
432   SynchEvent* e = GetSynchEvent(obj);
433   // logging is on if event recording is on and either there's no event struct,
434   // or it explicitly says to log
435   if (e == nullptr || e->log) {
436     void* pcs[40];
437     int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
438     // A buffer with enough space for the ASCII for all the PCs, even on a
439     // 64-bit machine.
440     char buffer[ABSL_ARRAYSIZE(pcs) * 24];
441     int pos = snprintf(buffer, sizeof(buffer), " @");
442     for (int i = 0; i != n; i++) {
443       int b = snprintf(&buffer[pos], sizeof(buffer) - static_cast<size_t>(pos),
444                        " %p", pcs[i]);
445       if (b < 0 ||
446           static_cast<size_t>(b) >= sizeof(buffer) - static_cast<size_t>(pos)) {
447         break;
448       }
449       pos += b;
450     }
451     ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
452                  (e == nullptr ? "" : e->name), buffer);
453   }
454   const int flags = event_properties[ev].flags;
455   if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
456     // Calling the invariant as is causes problems under ThreadSanitizer.
457     // We are currently inside of Mutex Lock/Unlock and are ignoring all
458     // memory accesses and synchronization. If the invariant transitively
459     // synchronizes something else and we ignore the synchronization, we will
460     // get false positive race reports later.
461     // Reuse EvalConditionAnnotated to properly call into user code.
462     struct local {
463       static bool pred(SynchEvent* ev) {
464         (*ev->invariant)(ev->arg);
465         return false;
466       }
467     };
468     Condition cond(&local::pred, e);
469     Mutex* mu = static_cast<Mutex*>(obj);
470     const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
471     const bool trylock = (flags & SYNCH_F_TRY) != 0;
472     const bool read_lock = (flags & SYNCH_F_R) != 0;
473     EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
474   }
475   UnrefSynchEvent(e);
476 }
477 
478 //------------------------------------------------------------------
479 
480 // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
481 // whether it has a timeout, the condition, exclusive/shared, and whether a
482 // condition variable wait has an associated Mutex (as opposed to another
483 // type of lock).  It also points to the PerThreadSynch struct of its thread.
484 // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
485 //
486 // This structure is held on the stack rather than directly in
487 // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
488 // while waiting on one Mutex, the implementation calls a client callback
489 // (such as a Condition function) that acquires another Mutex. We don't
490 // strictly need to allow this, but programmers become confused if we do not
491 // allow them to use functions such a LOG() within Condition functions.  The
492 // PerThreadSynch struct points at the most recent SynchWaitParams struct when
493 // the thread is on a Mutex's waiter queue.
494 struct SynchWaitParams {
SynchWaitParamsabsl::SynchWaitParams495   SynchWaitParams(Mutex::MuHow how_arg, const Condition* cond_arg,
496                   KernelTimeout timeout_arg, Mutex* cvmu_arg,
497                   PerThreadSynch* thread_arg,
498                   std::atomic<intptr_t>* cv_word_arg)
499       : how(how_arg),
500         cond(cond_arg),
501         timeout(timeout_arg),
502         cvmu(cvmu_arg),
503         thread(thread_arg),
504         cv_word(cv_word_arg),
505         contention_start_cycles(CycleClock::Now()),
506         should_submit_contention_data(false) {}
507 
508   const Mutex::MuHow how;  // How this thread needs to wait.
509   const Condition* cond;   // The condition that this thread is waiting for.
510                            // In Mutex, this field is set to zero if a timeout
511                            // expires.
512   KernelTimeout timeout;  // timeout expiry---absolute time
513                           // In Mutex, this field is set to zero if a timeout
514                           // expires.
515   Mutex* const cvmu;      // used for transfer from cond var to mutex
516   PerThreadSynch* const thread;  // thread that is waiting
517 
518   // If not null, thread should be enqueued on the CondVar whose state
519   // word is cv_word instead of queueing normally on the Mutex.
520   std::atomic<intptr_t>* cv_word;
521 
522   int64_t contention_start_cycles;  // Time (in cycles) when this thread started
523                                     // to contend for the mutex.
524   bool should_submit_contention_data;
525 };
526 
527 struct SynchLocksHeld {
528   int n;          // number of valid entries in locks[]
529   bool overflow;  // true iff we overflowed the array at some point
530   struct {
531     Mutex* mu;      // lock acquired
532     int32_t count;  // times acquired
533     GraphId id;     // deadlock_graph id of acquired lock
534   } locks[40];
535   // If a thread overfills the array during deadlock detection, we
536   // continue, discarding information as needed.  If no overflow has
537   // taken place, we can provide more error checking, such as
538   // detecting when a thread releases a lock it does not hold.
539 };
540 
541 // A sentinel value in lists that is not 0.
542 // A 0 value is used to mean "not on a list".
543 static PerThreadSynch* const kPerThreadSynchNull =
544     reinterpret_cast<PerThreadSynch*>(1);
545 
LocksHeldAlloc()546 static SynchLocksHeld* LocksHeldAlloc() {
547   SynchLocksHeld* ret = reinterpret_cast<SynchLocksHeld*>(
548       base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
549   ret->n = 0;
550   ret->overflow = false;
551   return ret;
552 }
553 
554 // Return the PerThreadSynch-struct for this thread.
Synch_GetPerThread()555 static PerThreadSynch* Synch_GetPerThread() {
556   ThreadIdentity* identity = GetOrCreateCurrentThreadIdentity();
557   return &identity->per_thread_synch;
558 }
559 
Synch_GetPerThreadAnnotated(Mutex * mu)560 static PerThreadSynch* Synch_GetPerThreadAnnotated(Mutex* mu) {
561   if (mu) {
562     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
563   }
564   PerThreadSynch* w = Synch_GetPerThread();
565   if (mu) {
566     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
567   }
568   return w;
569 }
570 
Synch_GetAllLocks()571 static SynchLocksHeld* Synch_GetAllLocks() {
572   PerThreadSynch* s = Synch_GetPerThread();
573   if (s->all_locks == nullptr) {
574     s->all_locks = LocksHeldAlloc();  // Freed by ReclaimThreadIdentity.
575   }
576   return s->all_locks;
577 }
578 
579 // Post on "w"'s associated PerThreadSem.
IncrementSynchSem(Mutex * mu,PerThreadSynch * w)580 void Mutex::IncrementSynchSem(Mutex* mu, PerThreadSynch* w) {
581   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
582   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
583   // We miss synchronization around passing PerThreadSynch between threads
584   // since it happens inside of the Mutex code, so we need to ignore all
585   // accesses to the object.
586   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
587   PerThreadSem::Post(w->thread_identity());
588   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
589   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
590 }
591 
592 // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
DecrementSynchSem(Mutex * mu,PerThreadSynch * w,KernelTimeout t)593 bool Mutex::DecrementSynchSem(Mutex* mu, PerThreadSynch* w, KernelTimeout t) {
594   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
595   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
596   assert(w == Synch_GetPerThread());
597   static_cast<void>(w);
598   bool res = PerThreadSem::Wait(t);
599   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
600   return res;
601 }
602 
603 // We're in a fatal signal handler that hopes to use Mutex and to get
604 // lucky by not deadlocking.  We try to improve its chances of success
605 // by effectively disabling some of the consistency checks.  This will
606 // prevent certain ABSL_RAW_CHECK() statements from being triggered when
607 // re-rentry is detected.  The ABSL_RAW_CHECK() statements are those in the
608 // Mutex code checking that the "waitp" field has not been reused.
InternalAttemptToUseMutexInFatalSignalHandler()609 void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
610   // Fix the per-thread state only if it exists.
611   ThreadIdentity* identity = CurrentThreadIdentityIfPresent();
612   if (identity != nullptr) {
613     identity->per_thread_synch.suppress_fatal_errors = true;
614   }
615   // Don't do deadlock detection when we are already failing.
616   synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
617                                  std::memory_order_release);
618 }
619 
620 // --------------------------Mutexes
621 
622 // In the layout below, the msb of the bottom byte is currently unused.  Also,
623 // the following constraints were considered in choosing the layout:
624 //  o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
625 //    0xcd) are illegal: reader and writer lock both held.
626 //  o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
627 //    bit-twiddling trick in Mutex::Unlock().
628 //  o kMuWriter / kMuReader == kMuWrWait / kMuWait,
629 //    to enable the bit-twiddling trick in CheckForMutexCorruption().
630 static const intptr_t kMuReader = 0x0001L;  // a reader holds the lock
631 // There's a designated waker.
632 // INVARIANT1:  there's a thread that was blocked on the mutex, is
633 // no longer, yet has not yet acquired the mutex.  If there's a
634 // designated waker, all threads can avoid taking the slow path in
635 // unlock because the designated waker will subsequently acquire
636 // the lock and wake someone.  To maintain INVARIANT1 the bit is
637 // set when a thread is unblocked(INV1a), and threads that were
638 // unblocked reset the bit when they either acquire or re-block (INV1b).
639 static const intptr_t kMuDesig = 0x0002L;
640 static const intptr_t kMuWait = 0x0004L;    // threads are waiting
641 static const intptr_t kMuWriter = 0x0008L;  // a writer holds the lock
642 static const intptr_t kMuEvent = 0x0010L;   // record this mutex's events
643 // Runnable writer is waiting for a reader.
644 // If set, new readers will not lock the mutex to avoid writer starvation.
645 // Note: if a reader has higher priority than the writer, it will still lock
646 // the mutex ahead of the waiting writer, but in a very inefficient manner:
647 // the reader will first queue itself and block, but then the last unlocking
648 // reader will wake it.
649 static const intptr_t kMuWrWait = 0x0020L;
650 static const intptr_t kMuSpin = 0x0040L;  // spinlock protects wait list
651 static const intptr_t kMuLow = 0x00ffL;   // mask all mutex bits
652 static const intptr_t kMuHigh = ~kMuLow;  // mask pointer/reader count
653 
654 // Hack to make constant values available to gdb pretty printer
655 enum {
656   kGdbMuSpin = kMuSpin,
657   kGdbMuEvent = kMuEvent,
658   kGdbMuWait = kMuWait,
659   kGdbMuWriter = kMuWriter,
660   kGdbMuDesig = kMuDesig,
661   kGdbMuWrWait = kMuWrWait,
662   kGdbMuReader = kMuReader,
663   kGdbMuLow = kMuLow,
664 };
665 
666 // kMuWrWait implies kMuWait.
667 // kMuReader and kMuWriter are mutually exclusive.
668 // If kMuReader is zero, there are no readers.
669 // Otherwise, if kMuWait is zero, the high order bits contain a count of the
670 // number of readers.  Otherwise, the reader count is held in
671 // PerThreadSynch::readers of the most recently queued waiter, again in the
672 // bits above kMuLow.
673 static const intptr_t kMuOne = 0x0100;  // a count of one reader
674 
675 // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
676 static const int kMuHasBlocked = 0x01;  // already blocked (MUST == 1)
677 static const int kMuIsCond = 0x02;      // conditional waiter (CV or Condition)
678 static const int kMuIsFer = 0x04;       // wait morphing from a CondVar
679 
680 static_assert(PerThreadSynch::kAlignment > kMuLow,
681               "PerThreadSynch::kAlignment must be greater than kMuLow");
682 
683 // This struct contains various bitmasks to be used in
684 // acquiring and releasing a mutex in a particular mode.
685 struct MuHowS {
686   // if all the bits in fast_need_zero are zero, the lock can be acquired by
687   // adding fast_add and oring fast_or.  The bit kMuDesig should be reset iff
688   // this is the designated waker.
689   intptr_t fast_need_zero;
690   intptr_t fast_or;
691   intptr_t fast_add;
692 
693   intptr_t slow_need_zero;  // fast_need_zero with events (e.g. logging)
694 
695   intptr_t slow_inc_need_zero;  // if all the bits in slow_inc_need_zero are
696                                 // zero a reader can acquire a read share by
697                                 // setting the reader bit and incrementing
698                                 // the reader count (in last waiter since
699                                 // we're now slow-path).  kMuWrWait be may
700                                 // be ignored if we already waited once.
701 };
702 
703 static const MuHowS kSharedS = {
704     // shared or read lock
705     kMuWriter | kMuWait | kMuEvent,   // fast_need_zero
706     kMuReader,                        // fast_or
707     kMuOne,                           // fast_add
708     kMuWriter | kMuWait,              // slow_need_zero
709     kMuSpin | kMuWriter | kMuWrWait,  // slow_inc_need_zero
710 };
711 static const MuHowS kExclusiveS = {
712     // exclusive or write lock
713     kMuWriter | kMuReader | kMuEvent,  // fast_need_zero
714     kMuWriter,                         // fast_or
715     0,                                 // fast_add
716     kMuWriter | kMuReader,             // slow_need_zero
717     ~static_cast<intptr_t>(0),         // slow_inc_need_zero
718 };
719 static const Mutex::MuHow kShared = &kSharedS;        // shared lock
720 static const Mutex::MuHow kExclusive = &kExclusiveS;  // exclusive lock
721 
722 #ifdef NDEBUG
723 static constexpr bool kDebugMode = false;
724 #else
725 static constexpr bool kDebugMode = true;
726 #endif
727 
728 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
TsanFlags(Mutex::MuHow how)729 static unsigned TsanFlags(Mutex::MuHow how) {
730   return how == kShared ? __tsan_mutex_read_lock : 0;
731 }
732 #endif
733 
734 #if defined(__APPLE__) || defined(ABSL_BUILD_DLL)
735 // When building a dll symbol export lists may reference the destructor
736 // and want it to be an exported symbol rather than an inline function.
737 // Some apple builds also do dynamic library build but don't say it explicitly.
~Mutex()738 Mutex::~Mutex() { Dtor(); }
739 #endif
740 
741 #if !defined(NDEBUG) || defined(ABSL_HAVE_THREAD_SANITIZER)
Dtor()742 void Mutex::Dtor() {
743   if (kDebugMode) {
744     this->ForgetDeadlockInfo();
745   }
746   ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
747 }
748 #endif
749 
EnableDebugLog(const char * name)750 void Mutex::EnableDebugLog(const char* name) {
751   // Need to disable writes here and in EnableInvariantDebugging to prevent
752   // false race reports on SynchEvent objects. TSan ignores synchronization
753   // on synch_event_mu in Lock/Unlock/etc methods due to mutex annotations,
754   // but it sees few accesses to SynchEvent in EvalConditionAnnotated.
755   // If we don't ignore accesses here, it can result in false races
756   // between EvalConditionAnnotated and SynchEvent reuse in EnsureSynchEvent.
757   ABSL_ANNOTATE_IGNORE_WRITES_BEGIN();
758   SynchEvent* e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
759   e->log = true;
760   UnrefSynchEvent(e);
761   // This prevents "error: undefined symbol: absl::Mutex::~Mutex()"
762   // in a release build (NDEBUG defined) when a test does "#undef NDEBUG"
763   // to use assert macro. In such case, the test does not get the dtor
764   // definition because it's supposed to be outline when NDEBUG is not defined,
765   // and this source file does not define one either because NDEBUG is defined.
766   // Since it's not possible to take address of a destructor, we move the
767   // actual destructor code into the separate Dtor function and force the
768   // compiler to emit this function even if it's inline by taking its address.
769   ABSL_ATTRIBUTE_UNUSED volatile auto dtor = &Mutex::Dtor;
770   ABSL_ANNOTATE_IGNORE_WRITES_END();
771 }
772 
EnableMutexInvariantDebugging(bool enabled)773 void EnableMutexInvariantDebugging(bool enabled) {
774   synch_check_invariants.store(enabled, std::memory_order_release);
775 }
776 
EnableInvariantDebugging(void (* invariant)(void *),void * arg)777 void Mutex::EnableInvariantDebugging(void (*invariant)(void*), void* arg) {
778   ABSL_ANNOTATE_IGNORE_WRITES_BEGIN();
779   if (synch_check_invariants.load(std::memory_order_acquire) &&
780       invariant != nullptr) {
781     SynchEvent* e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
782     e->invariant = invariant;
783     e->arg = arg;
784     UnrefSynchEvent(e);
785   }
786   ABSL_ANNOTATE_IGNORE_WRITES_END();
787 }
788 
SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)789 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
790   synch_deadlock_detection.store(mode, std::memory_order_release);
791 }
792 
793 // Return true iff threads x and y are part of the same equivalence
794 // class of waiters. An equivalence class is defined as the set of
795 // waiters with the same condition, type of lock, and thread priority.
796 //
797 // Requires that x and y be waiting on the same Mutex queue.
MuEquivalentWaiter(PerThreadSynch * x,PerThreadSynch * y)798 static bool MuEquivalentWaiter(PerThreadSynch* x, PerThreadSynch* y) {
799   return x->waitp->how == y->waitp->how && x->priority == y->priority &&
800          Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
801 }
802 
803 // Given the contents of a mutex word containing a PerThreadSynch pointer,
804 // return the pointer.
GetPerThreadSynch(intptr_t v)805 static inline PerThreadSynch* GetPerThreadSynch(intptr_t v) {
806   return reinterpret_cast<PerThreadSynch*>(v & kMuHigh);
807 }
808 
809 // The next several routines maintain the per-thread next and skip fields
810 // used in the Mutex waiter queue.
811 // The queue is a circular singly-linked list, of which the "head" is the
812 // last element, and head->next if the first element.
813 // The skip field has the invariant:
814 //   For thread x, x->skip is one of:
815 //     - invalid (iff x is not in a Mutex wait queue),
816 //     - null, or
817 //     - a pointer to a distinct thread waiting later in the same Mutex queue
818 //       such that all threads in [x, x->skip] have the same condition, priority
819 //       and lock type (MuEquivalentWaiter() is true for all pairs in [x,
820 //       x->skip]).
821 // In addition, if x->skip is  valid, (x->may_skip || x->skip == null)
822 //
823 // By the spec of MuEquivalentWaiter(), it is not necessary when removing the
824 // first runnable thread y from the front a Mutex queue to adjust the skip
825 // field of another thread x because if x->skip==y, x->skip must (have) become
826 // invalid before y is removed.  The function TryRemove can remove a specified
827 // thread from an arbitrary position in the queue whether runnable or not, so
828 // it fixes up skip fields that would otherwise be left dangling.
829 // The statement
830 //     if (x->may_skip && MuEquivalentWaiter(x, x->next)) { x->skip = x->next; }
831 // maintains the invariant provided x is not the last waiter in a Mutex queue
832 // The statement
833 //          if (x->skip != null) { x->skip = x->skip->skip; }
834 // maintains the invariant.
835 
836 // Returns the last thread y in a mutex waiter queue such that all threads in
837 // [x, y] inclusive share the same condition.  Sets skip fields of some threads
838 // in that range to optimize future evaluation of Skip() on x values in
839 // the range.  Requires thread x is in a mutex waiter queue.
840 // The locking is unusual.  Skip() is called under these conditions:
841 //   - spinlock is held in call from Enqueue(), with maybe_unlocking == false
842 //   - Mutex is held in call from UnlockSlow() by last unlocker, with
843 //     maybe_unlocking == true
844 //   - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
845 //     UnlockSlow()) and TryRemove()
846 // These cases are mutually exclusive, so Skip() never runs concurrently
847 // with itself on the same Mutex.   The skip chain is used in these other places
848 // that cannot occur concurrently:
849 //   - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
850 //   - Dequeue() (with spinlock and Mutex held)
851 //   - UnlockSlow() (with spinlock and Mutex held)
852 // A more complex case is Enqueue()
853 //   - Enqueue() (with spinlock held and maybe_unlocking == false)
854 //               This is the first case in which Skip is called, above.
855 //   - Enqueue() (without spinlock held; but queue is empty and being freshly
856 //                formed)
857 //   - Enqueue() (with spinlock held and maybe_unlocking == true)
858 // The first case has mutual exclusion, and the second isolation through
859 // working on an otherwise unreachable data structure.
860 // In the last case, Enqueue() is required to change no skip/next pointers
861 // except those in the added node and the former "head" node.  This implies
862 // that the new node is added after head, and so must be the new head or the
863 // new front of the queue.
Skip(PerThreadSynch * x)864 static PerThreadSynch* Skip(PerThreadSynch* x) {
865   PerThreadSynch* x0 = nullptr;
866   PerThreadSynch* x1 = x;
867   PerThreadSynch* x2 = x->skip;
868   if (x2 != nullptr) {
869     // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
870     // such that   x1 == x0->skip && x2 == x1->skip
871     while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
872       x0->skip = x2;  // short-circuit skip from x0 to x2
873     }
874     x->skip = x1;  // short-circuit skip from x to result
875   }
876   return x1;
877 }
878 
879 // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
880 // The latter is going to be removed out of order, because of a timeout.
881 // Check whether "ancestor" has a skip field pointing to "to_be_removed",
882 // and fix it if it does.
FixSkip(PerThreadSynch * ancestor,PerThreadSynch * to_be_removed)883 static void FixSkip(PerThreadSynch* ancestor, PerThreadSynch* to_be_removed) {
884   if (ancestor->skip == to_be_removed) {  // ancestor->skip left dangling
885     if (to_be_removed->skip != nullptr) {
886       ancestor->skip = to_be_removed->skip;  // can skip past to_be_removed
887     } else if (ancestor->next != to_be_removed) {  // they are not adjacent
888       ancestor->skip = ancestor->next;             // can skip one past ancestor
889     } else {
890       ancestor->skip = nullptr;  // can't skip at all
891     }
892   }
893 }
894 
895 static void CondVarEnqueue(SynchWaitParams* waitp);
896 
897 // Enqueue thread "waitp->thread" on a waiter queue.
898 // Called with mutex spinlock held if head != nullptr
899 // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
900 // idempotent; it alters no state associated with the existing (empty)
901 // queue.
902 //
903 // If waitp->cv_word == nullptr, queue the thread at either the front or
904 // the end (according to its priority) of the circular mutex waiter queue whose
905 // head is "head", and return the new head.  mu is the previous mutex state,
906 // which contains the reader count (perhaps adjusted for the operation in
907 // progress) if the list was empty and a read lock held, and the holder hint if
908 // the list was empty and a write lock held.  (flags & kMuIsCond) indicates
909 // whether this thread was transferred from a CondVar or is waiting for a
910 // non-trivial condition.  In this case, Enqueue() never returns nullptr
911 //
912 // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
913 // returned. This mechanism is used by CondVar to queue a thread on the
914 // condition variable queue instead of the mutex queue in implementing Wait().
915 // In this case, Enqueue() can return nullptr (if head==nullptr).
Enqueue(PerThreadSynch * head,SynchWaitParams * waitp,intptr_t mu,int flags)916 static PerThreadSynch* Enqueue(PerThreadSynch* head, SynchWaitParams* waitp,
917                                intptr_t mu, int flags) {
918   // If we have been given a cv_word, call CondVarEnqueue() and return
919   // the previous head of the Mutex waiter queue.
920   if (waitp->cv_word != nullptr) {
921     CondVarEnqueue(waitp);
922     return head;
923   }
924 
925   PerThreadSynch* s = waitp->thread;
926   ABSL_RAW_CHECK(
927       s->waitp == nullptr ||    // normal case
928           s->waitp == waitp ||  // Fer()---transfer from condition variable
929           s->suppress_fatal_errors,
930       "detected illegal recursion into Mutex code");
931   s->waitp = waitp;
932   s->skip = nullptr;   // maintain skip invariant (see above)
933   s->may_skip = true;  // always true on entering queue
934   s->wake = false;     // not being woken
935   s->cond_waiter = ((flags & kMuIsCond) != 0);
936 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
937   if ((flags & kMuIsFer) == 0) {
938     assert(s == Synch_GetPerThread());
939     int64_t now_cycles = CycleClock::Now();
940     if (s->next_priority_read_cycles < now_cycles) {
941       // Every so often, update our idea of the thread's priority.
942       // pthread_getschedparam() is 5% of the block/wakeup time;
943       // CycleClock::Now() is 0.5%.
944       int policy;
945       struct sched_param param;
946       const int err = pthread_getschedparam(pthread_self(), &policy, &param);
947       if (err != 0) {
948         ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
949       } else {
950         s->priority = param.sched_priority;
951         s->next_priority_read_cycles =
952             now_cycles + static_cast<int64_t>(CycleClock::Frequency());
953       }
954     }
955   }
956 #endif
957   if (head == nullptr) {         // s is the only waiter
958     s->next = s;                 // it's the only entry in the cycle
959     s->readers = mu;             // reader count is from mu word
960     s->maybe_unlocking = false;  // no one is searching an empty list
961     head = s;                    // s is new head
962   } else {
963     PerThreadSynch* enqueue_after = nullptr;  // we'll put s after this element
964 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
965     if (s->priority > head->priority) {  // s's priority is above head's
966       // try to put s in priority-fifo order, or failing that at the front.
967       if (!head->maybe_unlocking) {
968         // No unlocker can be scanning the queue, so we can insert into the
969         // middle of the queue.
970         //
971         // Within a skip chain, all waiters have the same priority, so we can
972         // skip forward through the chains until we find one with a lower
973         // priority than the waiter to be enqueued.
974         PerThreadSynch* advance_to = head;  // next value of enqueue_after
975         do {
976           enqueue_after = advance_to;
977           // (side-effect: optimizes skip chain)
978           advance_to = Skip(enqueue_after->next);
979         } while (s->priority <= advance_to->priority);
980         // termination guaranteed because s->priority > head->priority
981         // and head is the end of a skip chain
982       } else if (waitp->how == kExclusive && waitp->cond == nullptr) {
983         // An unlocker could be scanning the queue, but we know it will recheck
984         // the queue front for writers that have no condition, which is what s
985         // is, so an insert at front is safe.
986         enqueue_after = head;  // add after head, at front
987       }
988     }
989 #endif
990     if (enqueue_after != nullptr) {
991       s->next = enqueue_after->next;
992       enqueue_after->next = s;
993 
994       // enqueue_after can be: head, Skip(...), or cur.
995       // The first two imply enqueue_after->skip == nullptr, and
996       // the last is used only if MuEquivalentWaiter(s, cur).
997       // We require this because clearing enqueue_after->skip
998       // is impossible; enqueue_after's predecessors might also
999       // incorrectly skip over s if we were to allow other
1000       // insertion points.
1001       ABSL_RAW_CHECK(enqueue_after->skip == nullptr ||
1002                          MuEquivalentWaiter(enqueue_after, s),
1003                      "Mutex Enqueue failure");
1004 
1005       if (enqueue_after != head && enqueue_after->may_skip &&
1006           MuEquivalentWaiter(enqueue_after, enqueue_after->next)) {
1007         // enqueue_after can skip to its new successor, s
1008         enqueue_after->skip = enqueue_after->next;
1009       }
1010       if (MuEquivalentWaiter(s, s->next)) {  // s->may_skip is known to be true
1011         s->skip = s->next;                   // s may skip to its successor
1012       }
1013     } else if ((flags & kMuHasBlocked) &&
1014                (s->priority >= head->next->priority) &&
1015                (!head->maybe_unlocking ||
1016                 (waitp->how == kExclusive &&
1017                  Condition::GuaranteedEqual(waitp->cond, nullptr)))) {
1018       // This thread has already waited, then was woken, then failed to acquire
1019       // the mutex and now tries to requeue. Try to requeue it at head,
1020       // otherwise it can suffer bad latency (wait whole queue several times).
1021       // However, we need to be conservative. First, we need to ensure that we
1022       // respect priorities. Then, we need to be careful to not break wait
1023       // queue invariants: we require either that unlocker is not scanning
1024       // the queue or that the current thread is a writer with no condition
1025       // (unlocker will recheck the queue for such waiters).
1026       s->next = head->next;
1027       head->next = s;
1028       if (MuEquivalentWaiter(s, s->next)) {  // s->may_skip is known to be true
1029         s->skip = s->next;                   // s may skip to its successor
1030       }
1031     } else {  // enqueue not done any other way, so
1032               // we're inserting s at the back
1033       // s will become new head; copy data from head into it
1034       s->next = head->next;  // add s after head
1035       head->next = s;
1036       s->readers = head->readers;  // reader count is from previous head
1037       s->maybe_unlocking = head->maybe_unlocking;  // same for unlock hint
1038       if (head->may_skip && MuEquivalentWaiter(head, s)) {
1039         // head now has successor; may skip
1040         head->skip = s;
1041       }
1042       head = s;  // s is new head
1043     }
1044   }
1045   s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
1046   return head;
1047 }
1048 
1049 // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
1050 // whose last element is head.  The new head element is returned, or null
1051 // if the list is made empty.
1052 // Dequeue is called with both spinlock and Mutex held.
Dequeue(PerThreadSynch * head,PerThreadSynch * pw)1053 static PerThreadSynch* Dequeue(PerThreadSynch* head, PerThreadSynch* pw) {
1054   PerThreadSynch* w = pw->next;
1055   pw->next = w->next;                 // snip w out of list
1056   if (head == w) {                    // we removed the head
1057     head = (pw == w) ? nullptr : pw;  // either emptied list, or pw is new head
1058   } else if (pw != head && MuEquivalentWaiter(pw, pw->next)) {
1059     // pw can skip to its new successor
1060     if (pw->next->skip !=
1061         nullptr) {  // either skip to its successors skip target
1062       pw->skip = pw->next->skip;
1063     } else {  // or to pw's successor
1064       pw->skip = pw->next;
1065     }
1066   }
1067   return head;
1068 }
1069 
1070 // Traverse the elements [ pw->next, h] of the circular list whose last element
1071 // is head.
1072 // Remove all elements with wake==true and place them in the
1073 // singly-linked list wake_list in the order found.   Assumes that
1074 // there is only one such element if the element has how == kExclusive.
1075 // Return the new head.
DequeueAllWakeable(PerThreadSynch * head,PerThreadSynch * pw,PerThreadSynch ** wake_tail)1076 static PerThreadSynch* DequeueAllWakeable(PerThreadSynch* head,
1077                                           PerThreadSynch* pw,
1078                                           PerThreadSynch** wake_tail) {
1079   PerThreadSynch* orig_h = head;
1080   PerThreadSynch* w = pw->next;
1081   bool skipped = false;
1082   do {
1083     if (w->wake) {  // remove this element
1084       ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
1085       // we're removing pw's successor so either pw->skip is zero or we should
1086       // already have removed pw since if pw->skip!=null, pw has the same
1087       // condition as w.
1088       head = Dequeue(head, pw);
1089       w->next = *wake_tail;               // keep list terminated
1090       *wake_tail = w;                     // add w to wake_list;
1091       wake_tail = &w->next;               // next addition to end
1092       if (w->waitp->how == kExclusive) {  // wake at most 1 writer
1093         break;
1094       }
1095     } else {         // not waking this one; skip
1096       pw = Skip(w);  // skip as much as possible
1097       skipped = true;
1098     }
1099     w = pw->next;
1100     // We want to stop processing after we've considered the original head,
1101     // orig_h.  We can't test for w==orig_h in the loop because w may skip over
1102     // it; we are guaranteed only that w's predecessor will not skip over
1103     // orig_h.  When we've considered orig_h, either we've processed it and
1104     // removed it (so orig_h != head), or we considered it and skipped it (so
1105     // skipped==true && pw == head because skipping from head always skips by
1106     // just one, leaving pw pointing at head).  So we want to
1107     // continue the loop with the negation of that expression.
1108   } while (orig_h == head && (pw != head || !skipped));
1109   return head;
1110 }
1111 
1112 // Try to remove thread s from the list of waiters on this mutex.
1113 // Does nothing if s is not on the waiter list.
TryRemove(PerThreadSynch * s)1114 void Mutex::TryRemove(PerThreadSynch* s) {
1115   SchedulingGuard::ScopedDisable disable_rescheduling;
1116   intptr_t v = mu_.load(std::memory_order_relaxed);
1117   // acquire spinlock & lock
1118   if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
1119       mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
1120                                   std::memory_order_acquire,
1121                                   std::memory_order_relaxed)) {
1122     PerThreadSynch* h = GetPerThreadSynch(v);
1123     if (h != nullptr) {
1124       PerThreadSynch* pw = h;  // pw is w's predecessor
1125       PerThreadSynch* w;
1126       if ((w = pw->next) != s) {  // search for thread,
1127         do {                      // processing at least one element
1128           // If the current element isn't equivalent to the waiter to be
1129           // removed, we can skip the entire chain.
1130           if (!MuEquivalentWaiter(s, w)) {
1131             pw = Skip(w);  // so skip all that won't match
1132             // we don't have to worry about dangling skip fields
1133             // in the threads we skipped; none can point to s
1134             // because they are in a different equivalence class.
1135           } else {          // seeking same condition
1136             FixSkip(w, s);  // fix up any skip pointer from w to s
1137             pw = w;
1138           }
1139           // don't search further if we found the thread, or we're about to
1140           // process the first thread again.
1141         } while ((w = pw->next) != s && pw != h);
1142       }
1143       if (w == s) {  // found thread; remove it
1144         // pw->skip may be non-zero here; the loop above ensured that
1145         // no ancestor of s can skip to s, so removal is safe anyway.
1146         h = Dequeue(h, pw);
1147         s->next = nullptr;
1148         s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1149       }
1150     }
1151     intptr_t nv;
1152     do {  // release spinlock and lock
1153       v = mu_.load(std::memory_order_relaxed);
1154       nv = v & (kMuDesig | kMuEvent);
1155       if (h != nullptr) {
1156         nv |= kMuWait | reinterpret_cast<intptr_t>(h);
1157         h->readers = 0;              // we hold writer lock
1158         h->maybe_unlocking = false;  // finished unlocking
1159       }
1160     } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release,
1161                                         std::memory_order_relaxed));
1162   }
1163 }
1164 
1165 // Wait until thread "s", which must be the current thread, is removed from the
1166 // this mutex's waiter queue.  If "s->waitp->timeout" has a timeout, wake up
1167 // if the wait extends past the absolute time specified, even if "s" is still
1168 // on the mutex queue.  In this case, remove "s" from the queue and return
1169 // true, otherwise return false.
Block(PerThreadSynch * s)1170 void Mutex::Block(PerThreadSynch* s) {
1171   while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
1172     if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
1173       // After a timeout, we go into a spin loop until we remove ourselves
1174       // from the queue, or someone else removes us.  We can't be sure to be
1175       // able to remove ourselves in a single lock acquisition because this
1176       // mutex may be held, and the holder has the right to read the centre
1177       // of the waiter queue without holding the spinlock.
1178       this->TryRemove(s);
1179       int c = 0;
1180       while (s->next != nullptr) {
1181         c = synchronization_internal::MutexDelay(c, GENTLE);
1182         this->TryRemove(s);
1183       }
1184       if (kDebugMode) {
1185         // This ensures that we test the case that TryRemove() is called when s
1186         // is not on the queue.
1187         this->TryRemove(s);
1188       }
1189       s->waitp->timeout = KernelTimeout::Never();  // timeout is satisfied
1190       s->waitp->cond = nullptr;  // condition no longer relevant for wakeups
1191     }
1192   }
1193   ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
1194                  "detected illegal recursion in Mutex code");
1195   s->waitp = nullptr;
1196 }
1197 
1198 // Wake thread w, and return the next thread in the list.
Wakeup(PerThreadSynch * w)1199 PerThreadSynch* Mutex::Wakeup(PerThreadSynch* w) {
1200   PerThreadSynch* next = w->next;
1201   w->next = nullptr;
1202   w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1203   IncrementSynchSem(this, w);
1204 
1205   return next;
1206 }
1207 
GetGraphIdLocked(Mutex * mu)1208 static GraphId GetGraphIdLocked(Mutex* mu)
1209     ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
1210   if (!deadlock_graph) {  // (re)create the deadlock graph.
1211     deadlock_graph =
1212         new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
1213             GraphCycles;
1214   }
1215   return deadlock_graph->GetId(mu);
1216 }
1217 
GetGraphId(Mutex * mu)1218 static GraphId GetGraphId(Mutex* mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
1219   deadlock_graph_mu.Lock();
1220   GraphId id = GetGraphIdLocked(mu);
1221   deadlock_graph_mu.Unlock();
1222   return id;
1223 }
1224 
1225 // Record a lock acquisition.  This is used in debug mode for deadlock
1226 // detection.  The held_locks pointer points to the relevant data
1227 // structure for each case.
LockEnter(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1228 static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld* held_locks) {
1229   int n = held_locks->n;
1230   int i = 0;
1231   while (i != n && held_locks->locks[i].id != id) {
1232     i++;
1233   }
1234   if (i == n) {
1235     if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
1236       held_locks->overflow = true;  // lost some data
1237     } else {                        // we have room for lock
1238       held_locks->locks[i].mu = mu;
1239       held_locks->locks[i].count = 1;
1240       held_locks->locks[i].id = id;
1241       held_locks->n = n + 1;
1242     }
1243   } else {
1244     held_locks->locks[i].count++;
1245   }
1246 }
1247 
1248 // Record a lock release.  Each call to LockEnter(mu, id, x) should be
1249 // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
1250 // It does not process the event if is not needed when deadlock detection is
1251 // disabled.
LockLeave(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1252 static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld* held_locks) {
1253   int n = held_locks->n;
1254   int i = 0;
1255   while (i != n && held_locks->locks[i].id != id) {
1256     i++;
1257   }
1258   if (i == n) {
1259     if (!held_locks->overflow) {
1260       // The deadlock id may have been reassigned after ForgetDeadlockInfo,
1261       // but in that case mu should still be present.
1262       i = 0;
1263       while (i != n && held_locks->locks[i].mu != mu) {
1264         i++;
1265       }
1266       if (i == n) {  // mu missing means releasing unheld lock
1267         SynchEvent* mu_events = GetSynchEvent(mu);
1268         ABSL_RAW_LOG(FATAL,
1269                      "thread releasing lock it does not hold: %p %s; "
1270                      ,
1271                      static_cast<void*>(mu),
1272                      mu_events == nullptr ? "" : mu_events->name);
1273       }
1274     }
1275   } else if (held_locks->locks[i].count == 1) {
1276     held_locks->n = n - 1;
1277     held_locks->locks[i] = held_locks->locks[n - 1];
1278     held_locks->locks[n - 1].id = InvalidGraphId();
1279     held_locks->locks[n - 1].mu =
1280         nullptr;  // clear mu to please the leak detector.
1281   } else {
1282     assert(held_locks->locks[i].count > 0);
1283     held_locks->locks[i].count--;
1284   }
1285 }
1286 
1287 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu)1288 static inline void DebugOnlyLockEnter(Mutex* mu) {
1289   if (kDebugMode) {
1290     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1291         OnDeadlockCycle::kIgnore) {
1292       LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
1293     }
1294   }
1295 }
1296 
1297 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu,GraphId id)1298 static inline void DebugOnlyLockEnter(Mutex* mu, GraphId id) {
1299   if (kDebugMode) {
1300     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1301         OnDeadlockCycle::kIgnore) {
1302       LockEnter(mu, id, Synch_GetAllLocks());
1303     }
1304   }
1305 }
1306 
1307 // Call LockLeave() if in debug mode and deadlock detection is enabled.
DebugOnlyLockLeave(Mutex * mu)1308 static inline void DebugOnlyLockLeave(Mutex* mu) {
1309   if (kDebugMode) {
1310     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1311         OnDeadlockCycle::kIgnore) {
1312       LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
1313     }
1314   }
1315 }
1316 
StackString(void ** pcs,int n,char * buf,int maxlen,bool symbolize)1317 static char* StackString(void** pcs, int n, char* buf, int maxlen,
1318                          bool symbolize) {
1319   static constexpr int kSymLen = 200;
1320   char sym[kSymLen];
1321   int len = 0;
1322   for (int i = 0; i != n; i++) {
1323     if (len >= maxlen)
1324       return buf;
1325     size_t count = static_cast<size_t>(maxlen - len);
1326     if (symbolize) {
1327       if (!absl::Symbolize(pcs[i], sym, kSymLen)) {
1328         sym[0] = '\0';
1329       }
1330       snprintf(buf + len, count, "%s\t@ %p %s\n", (i == 0 ? "\n" : ""), pcs[i],
1331                sym);
1332     } else {
1333       snprintf(buf + len, count, " %p", pcs[i]);
1334     }
1335     len += strlen(&buf[len]);
1336   }
1337   return buf;
1338 }
1339 
CurrentStackString(char * buf,int maxlen,bool symbolize)1340 static char* CurrentStackString(char* buf, int maxlen, bool symbolize) {
1341   void* pcs[40];
1342   return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
1343                      maxlen, symbolize);
1344 }
1345 
1346 namespace {
1347 enum {
1348   kMaxDeadlockPathLen = 10
1349 };  // maximum length of a deadlock cycle;
1350     // a path this long would be remarkable
1351 // Buffers required to report a deadlock.
1352 // We do not allocate them on stack to avoid large stack frame.
1353 struct DeadlockReportBuffers {
1354   char buf[6100];
1355   GraphId path[kMaxDeadlockPathLen];
1356 };
1357 
1358 struct ScopedDeadlockReportBuffers {
ScopedDeadlockReportBuffersabsl::__anone4e938ef0a11::ScopedDeadlockReportBuffers1359   ScopedDeadlockReportBuffers() {
1360     b = reinterpret_cast<DeadlockReportBuffers*>(
1361         base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
1362   }
~ScopedDeadlockReportBuffersabsl::__anone4e938ef0a11::ScopedDeadlockReportBuffers1363   ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
1364   DeadlockReportBuffers* b;
1365 };
1366 
1367 // Helper to pass to GraphCycles::UpdateStackTrace.
GetStack(void ** stack,int max_depth)1368 int GetStack(void** stack, int max_depth) {
1369   return absl::GetStackTrace(stack, max_depth, 3);
1370 }
1371 }  // anonymous namespace
1372 
1373 // Called in debug mode when a thread is about to acquire a lock in a way that
1374 // may block.
DeadlockCheck(Mutex * mu)1375 static GraphId DeadlockCheck(Mutex* mu) {
1376   if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1377       OnDeadlockCycle::kIgnore) {
1378     return InvalidGraphId();
1379   }
1380 
1381   SynchLocksHeld* all_locks = Synch_GetAllLocks();
1382 
1383   absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
1384   const GraphId mu_id = GetGraphIdLocked(mu);
1385 
1386   if (all_locks->n == 0) {
1387     // There are no other locks held. Return now so that we don't need to
1388     // call GetSynchEvent(). This way we do not record the stack trace
1389     // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
1390     // it can't always be the first lock acquired by a thread.
1391     return mu_id;
1392   }
1393 
1394   // We prefer to keep stack traces that show a thread holding and acquiring
1395   // as many locks as possible.  This increases the chances that a given edge
1396   // in the acquires-before graph will be represented in the stack traces
1397   // recorded for the locks.
1398   deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
1399 
1400   // For each other mutex already held by this thread:
1401   for (int i = 0; i != all_locks->n; i++) {
1402     const GraphId other_node_id = all_locks->locks[i].id;
1403     const Mutex* other =
1404         static_cast<const Mutex*>(deadlock_graph->Ptr(other_node_id));
1405     if (other == nullptr) {
1406       // Ignore stale lock
1407       continue;
1408     }
1409 
1410     // Add the acquired-before edge to the graph.
1411     if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
1412       ScopedDeadlockReportBuffers scoped_buffers;
1413       DeadlockReportBuffers* b = scoped_buffers.b;
1414       static int number_of_reported_deadlocks = 0;
1415       number_of_reported_deadlocks++;
1416       // Symbolize only 2 first deadlock report to avoid huge slowdowns.
1417       bool symbolize = number_of_reported_deadlocks <= 2;
1418       ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
1419                    CurrentStackString(b->buf, sizeof (b->buf), symbolize));
1420       size_t len = 0;
1421       for (int j = 0; j != all_locks->n; j++) {
1422         void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
1423         if (pr != nullptr) {
1424           snprintf(b->buf + len, sizeof(b->buf) - len, " %p", pr);
1425           len += strlen(&b->buf[len]);
1426         }
1427       }
1428       ABSL_RAW_LOG(ERROR,
1429                    "Acquiring absl::Mutex %p while holding %s; a cycle in the "
1430                    "historical lock ordering graph has been observed",
1431                    static_cast<void*>(mu), b->buf);
1432       ABSL_RAW_LOG(ERROR, "Cycle: ");
1433       int path_len = deadlock_graph->FindPath(mu_id, other_node_id,
1434                                               ABSL_ARRAYSIZE(b->path), b->path);
1435       for (int j = 0; j != path_len && j != ABSL_ARRAYSIZE(b->path); j++) {
1436         GraphId id = b->path[j];
1437         Mutex* path_mu = static_cast<Mutex*>(deadlock_graph->Ptr(id));
1438         if (path_mu == nullptr) continue;
1439         void** stack;
1440         int depth = deadlock_graph->GetStackTrace(id, &stack);
1441         snprintf(b->buf, sizeof(b->buf),
1442                  "mutex@%p stack: ", static_cast<void*>(path_mu));
1443         StackString(stack, depth, b->buf + strlen(b->buf),
1444                     static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
1445                     symbolize);
1446         ABSL_RAW_LOG(ERROR, "%s", b->buf);
1447       }
1448       if (path_len > static_cast<int>(ABSL_ARRAYSIZE(b->path))) {
1449         ABSL_RAW_LOG(ERROR, "(long cycle; list truncated)");
1450       }
1451       if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1452           OnDeadlockCycle::kAbort) {
1453         deadlock_graph_mu.Unlock();  // avoid deadlock in fatal sighandler
1454         ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
1455         return mu_id;
1456       }
1457       break;  // report at most one potential deadlock per acquisition
1458     }
1459   }
1460 
1461   return mu_id;
1462 }
1463 
1464 // Invoke DeadlockCheck() iff we're in debug mode and
1465 // deadlock checking has been enabled.
DebugOnlyDeadlockCheck(Mutex * mu)1466 static inline GraphId DebugOnlyDeadlockCheck(Mutex* mu) {
1467   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1468                         OnDeadlockCycle::kIgnore) {
1469     return DeadlockCheck(mu);
1470   } else {
1471     return InvalidGraphId();
1472   }
1473 }
1474 
ForgetDeadlockInfo()1475 void Mutex::ForgetDeadlockInfo() {
1476   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1477                         OnDeadlockCycle::kIgnore) {
1478     deadlock_graph_mu.Lock();
1479     if (deadlock_graph != nullptr) {
1480       deadlock_graph->RemoveNode(this);
1481     }
1482     deadlock_graph_mu.Unlock();
1483   }
1484 }
1485 
AssertNotHeld() const1486 void Mutex::AssertNotHeld() const {
1487   // We have the data to allow this check only if in debug mode and deadlock
1488   // detection is enabled.
1489   if (kDebugMode &&
1490       (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
1491       synch_deadlock_detection.load(std::memory_order_acquire) !=
1492           OnDeadlockCycle::kIgnore) {
1493     GraphId id = GetGraphId(const_cast<Mutex*>(this));
1494     SynchLocksHeld* locks = Synch_GetAllLocks();
1495     for (int i = 0; i != locks->n; i++) {
1496       if (locks->locks[i].id == id) {
1497         SynchEvent* mu_events = GetSynchEvent(this);
1498         ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
1499                      static_cast<const void*>(this),
1500                      (mu_events == nullptr ? "" : mu_events->name));
1501       }
1502     }
1503   }
1504 }
1505 
1506 // Attempt to acquire *mu, and return whether successful.  The implementation
1507 // may spin for a short while if the lock cannot be acquired immediately.
TryAcquireWithSpinning(std::atomic<intptr_t> * mu)1508 static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
1509   int c = globals.spinloop_iterations.load(std::memory_order_relaxed);
1510   do {  // do/while somewhat faster on AMD
1511     intptr_t v = mu->load(std::memory_order_relaxed);
1512     if ((v & (kMuReader | kMuEvent)) != 0) {
1513       return false;                       // a reader or tracing -> give up
1514     } else if (((v & kMuWriter) == 0) &&  // no holder -> try to acquire
1515                mu->compare_exchange_strong(v, kMuWriter | v,
1516                                            std::memory_order_acquire,
1517                                            std::memory_order_relaxed)) {
1518       return true;
1519     }
1520   } while (--c > 0);
1521   return false;
1522 }
1523 
Lock()1524 void Mutex::Lock() {
1525   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1526   GraphId id = DebugOnlyDeadlockCheck(this);
1527   intptr_t v = mu_.load(std::memory_order_relaxed);
1528   // try fast acquire, then spin loop
1529   if (ABSL_PREDICT_FALSE((v & (kMuWriter | kMuReader | kMuEvent)) != 0) ||
1530       ABSL_PREDICT_FALSE(!mu_.compare_exchange_strong(
1531           v, kMuWriter | v, std::memory_order_acquire,
1532           std::memory_order_relaxed))) {
1533     // try spin acquire, then slow loop
1534     if (ABSL_PREDICT_FALSE(!TryAcquireWithSpinning(&this->mu_))) {
1535       this->LockSlow(kExclusive, nullptr, 0);
1536     }
1537   }
1538   DebugOnlyLockEnter(this, id);
1539   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1540 }
1541 
ReaderLock()1542 void Mutex::ReaderLock() {
1543   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1544   GraphId id = DebugOnlyDeadlockCheck(this);
1545   intptr_t v = mu_.load(std::memory_order_relaxed);
1546   for (;;) {
1547     // If there are non-readers holding the lock, use the slow loop.
1548     if (ABSL_PREDICT_FALSE(v & (kMuWriter | kMuWait | kMuEvent)) != 0) {
1549       this->LockSlow(kShared, nullptr, 0);
1550       break;
1551     }
1552     // We can avoid the loop and only use the CAS when the lock is free or
1553     // only held by readers.
1554     if (ABSL_PREDICT_TRUE(mu_.compare_exchange_weak(
1555             v, (kMuReader | v) + kMuOne, std::memory_order_acquire,
1556             std::memory_order_relaxed))) {
1557       break;
1558     }
1559   }
1560   DebugOnlyLockEnter(this, id);
1561   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1562 }
1563 
LockWhenCommon(const Condition & cond,synchronization_internal::KernelTimeout t,bool write)1564 bool Mutex::LockWhenCommon(const Condition& cond,
1565                            synchronization_internal::KernelTimeout t,
1566                            bool write) {
1567   MuHow how = write ? kExclusive : kShared;
1568   ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1569   GraphId id = DebugOnlyDeadlockCheck(this);
1570   bool res = LockSlowWithDeadline(how, &cond, t, 0);
1571   DebugOnlyLockEnter(this, id);
1572   ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1573   return res;
1574 }
1575 
AwaitCommon(const Condition & cond,KernelTimeout t)1576 bool Mutex::AwaitCommon(const Condition& cond, KernelTimeout t) {
1577   if (kDebugMode) {
1578     this->AssertReaderHeld();
1579   }
1580   if (cond.Eval()) {  // condition already true; nothing to do
1581     return true;
1582   }
1583   MuHow how =
1584       (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
1585   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
1586   SynchWaitParams waitp(how, &cond, t, nullptr /*no cvmu*/,
1587                         Synch_GetPerThreadAnnotated(this),
1588                         nullptr /*no cv_word*/);
1589   this->UnlockSlow(&waitp);
1590   this->Block(waitp.thread);
1591   ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
1592   ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1593   this->LockSlowLoop(&waitp, kMuHasBlocked | kMuIsCond);
1594   bool res = waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
1595              EvalConditionAnnotated(&cond, this, true, false, how == kShared);
1596   ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1597   ABSL_RAW_CHECK(res || t.has_timeout(),
1598                  "condition untrue on return from Await");
1599   return res;
1600 }
1601 
TryLock()1602 bool Mutex::TryLock() {
1603   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
1604   intptr_t v = mu_.load(std::memory_order_relaxed);
1605   // Try fast acquire.
1606   if (ABSL_PREDICT_TRUE((v & (kMuWriter | kMuReader | kMuEvent)) == 0)) {
1607     if (ABSL_PREDICT_TRUE(mu_.compare_exchange_strong(
1608             v, kMuWriter | v, std::memory_order_acquire,
1609             std::memory_order_relaxed))) {
1610       DebugOnlyLockEnter(this);
1611       ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1612       return true;
1613     }
1614   } else if (ABSL_PREDICT_FALSE((v & kMuEvent) != 0)) {
1615     // We're recording events.
1616     return TryLockSlow();
1617   }
1618   ABSL_TSAN_MUTEX_POST_LOCK(
1619       this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1620   return false;
1621 }
1622 
TryLockSlow()1623 ABSL_ATTRIBUTE_NOINLINE bool Mutex::TryLockSlow() {
1624   intptr_t v = mu_.load(std::memory_order_relaxed);
1625   if ((v & kExclusive->slow_need_zero) == 0 &&  // try fast acquire
1626       mu_.compare_exchange_strong(
1627           v, (kExclusive->fast_or | v) + kExclusive->fast_add,
1628           std::memory_order_acquire, std::memory_order_relaxed)) {
1629     DebugOnlyLockEnter(this);
1630     PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
1631     ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1632     return true;
1633   }
1634   PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
1635   ABSL_TSAN_MUTEX_POST_LOCK(
1636       this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1637   return false;
1638 }
1639 
ReaderTryLock()1640 bool Mutex::ReaderTryLock() {
1641   ABSL_TSAN_MUTEX_PRE_LOCK(this,
1642                            __tsan_mutex_read_lock | __tsan_mutex_try_lock);
1643   intptr_t v = mu_.load(std::memory_order_relaxed);
1644   // Clang tends to unroll the loop when compiling with optimization.
1645   // But in this case it just unnecessary increases code size.
1646   // If CAS is failing due to contention, the jump cost is negligible.
1647 #if defined(__clang__)
1648 #pragma nounroll
1649 #endif
1650   // The while-loops (here and below) iterate only if the mutex word keeps
1651   // changing (typically because the reader count changes) under the CAS.
1652   // We limit the number of attempts to avoid having to think about livelock.
1653   for (int loop_limit = 5; loop_limit != 0; loop_limit--) {
1654     if (ABSL_PREDICT_FALSE((v & (kMuWriter | kMuWait | kMuEvent)) != 0)) {
1655       break;
1656     }
1657     if (ABSL_PREDICT_TRUE(mu_.compare_exchange_strong(
1658             v, (kMuReader | v) + kMuOne, std::memory_order_acquire,
1659             std::memory_order_relaxed))) {
1660       DebugOnlyLockEnter(this);
1661       ABSL_TSAN_MUTEX_POST_LOCK(
1662           this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1663       return true;
1664     }
1665   }
1666   if (ABSL_PREDICT_TRUE((v & kMuEvent) == 0)) {
1667     ABSL_TSAN_MUTEX_POST_LOCK(this,
1668                               __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1669                                   __tsan_mutex_try_lock_failed,
1670                               0);
1671     return false;
1672   }
1673   // we're recording events
1674   return ReaderTryLockSlow();
1675 }
1676 
ReaderTryLockSlow()1677 ABSL_ATTRIBUTE_NOINLINE bool Mutex::ReaderTryLockSlow() {
1678   intptr_t v = mu_.load(std::memory_order_relaxed);
1679 #if defined(__clang__)
1680 #pragma nounroll
1681 #endif
1682   for (int loop_limit = 5; loop_limit != 0; loop_limit--) {
1683     if ((v & kShared->slow_need_zero) == 0 &&
1684         mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1685                                     std::memory_order_acquire,
1686                                     std::memory_order_relaxed)) {
1687       DebugOnlyLockEnter(this);
1688       PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
1689       ABSL_TSAN_MUTEX_POST_LOCK(
1690           this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1691       return true;
1692     }
1693   }
1694   PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
1695   ABSL_TSAN_MUTEX_POST_LOCK(this,
1696                             __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1697                                 __tsan_mutex_try_lock_failed,
1698                             0);
1699   return false;
1700 }
1701 
Unlock()1702 void Mutex::Unlock() {
1703   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
1704   DebugOnlyLockLeave(this);
1705   intptr_t v = mu_.load(std::memory_order_relaxed);
1706 
1707   if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
1708     ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
1709                  static_cast<unsigned>(v));
1710   }
1711 
1712   // should_try_cas is whether we'll try a compare-and-swap immediately.
1713   // NOTE: optimized out when kDebugMode is false.
1714   bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
1715                          (v & (kMuWait | kMuDesig)) != kMuWait);
1716   // But, we can use an alternate computation of it, that compilers
1717   // currently don't find on their own.  When that changes, this function
1718   // can be simplified.
1719   intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
1720   intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
1721   // Claim: "x == 0 && y > 0" is equal to should_try_cas.
1722   // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
1723   // all possible non-zero values for x exceed all possible values for y.
1724   // Therefore, (x == 0 && y > 0) == (x < y).
1725   if (kDebugMode && should_try_cas != (x < y)) {
1726     // We would usually use PRIdPTR here, but is not correctly implemented
1727     // within the android toolchain.
1728     ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
1729                  static_cast<long long>(v), static_cast<long long>(x),
1730                  static_cast<long long>(y));
1731   }
1732   if (x < y && mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
1733                                            std::memory_order_release,
1734                                            std::memory_order_relaxed)) {
1735     // fast writer release (writer with no waiters or with designated waker)
1736   } else {
1737     this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
1738   }
1739   ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
1740 }
1741 
1742 // Requires v to represent a reader-locked state.
ExactlyOneReader(intptr_t v)1743 static bool ExactlyOneReader(intptr_t v) {
1744   assert((v & (kMuWriter | kMuReader)) == kMuReader);
1745   assert((v & kMuHigh) != 0);
1746   // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
1747   // on some architectures the following generates slightly smaller code.
1748   // It may be faster too.
1749   constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
1750   return (v & kMuMultipleWaitersMask) == 0;
1751 }
1752 
ReaderUnlock()1753 void Mutex::ReaderUnlock() {
1754   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
1755   DebugOnlyLockLeave(this);
1756   intptr_t v = mu_.load(std::memory_order_relaxed);
1757   assert((v & (kMuWriter | kMuReader)) == kMuReader);
1758   for (;;) {
1759     if (ABSL_PREDICT_FALSE((v & (kMuReader | kMuWait | kMuEvent)) !=
1760                            kMuReader)) {
1761       this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
1762       break;
1763     }
1764     // fast reader release (reader with no waiters)
1765     intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
1766     if (ABSL_PREDICT_TRUE(
1767             mu_.compare_exchange_strong(v, v - clear, std::memory_order_release,
1768                                         std::memory_order_relaxed))) {
1769       break;
1770     }
1771   }
1772   ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1773 }
1774 
1775 // Clears the designated waker flag in the mutex if this thread has blocked, and
1776 // therefore may be the designated waker.
ClearDesignatedWakerMask(int flag)1777 static intptr_t ClearDesignatedWakerMask(int flag) {
1778   assert(flag >= 0);
1779   assert(flag <= 1);
1780   switch (flag) {
1781     case 0:  // not blocked
1782       return ~static_cast<intptr_t>(0);
1783     case 1:  // blocked; turn off the designated waker bit
1784       return ~static_cast<intptr_t>(kMuDesig);
1785   }
1786   ABSL_UNREACHABLE();
1787 }
1788 
1789 // Conditionally ignores the existence of waiting writers if a reader that has
1790 // already blocked once wakes up.
IgnoreWaitingWritersMask(int flag)1791 static intptr_t IgnoreWaitingWritersMask(int flag) {
1792   assert(flag >= 0);
1793   assert(flag <= 1);
1794   switch (flag) {
1795     case 0:  // not blocked
1796       return ~static_cast<intptr_t>(0);
1797     case 1:  // blocked; pretend there are no waiting writers
1798       return ~static_cast<intptr_t>(kMuWrWait);
1799   }
1800   ABSL_UNREACHABLE();
1801 }
1802 
1803 // Internal version of LockWhen().  See LockSlowWithDeadline()
LockSlow(MuHow how,const Condition * cond,int flags)1804 ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition* cond,
1805                                              int flags) {
1806   // Note: we specifically initialize spinloop_iterations after the first use
1807   // in TryAcquireWithSpinning so that Lock function does not have any non-tail
1808   // calls and consequently a stack frame. It's fine to have spinloop_iterations
1809   // uninitialized (meaning no spinning) in all initial uncontended Lock calls
1810   // and in the first contended call. After that we will have
1811   // spinloop_iterations properly initialized.
1812   if (ABSL_PREDICT_FALSE(
1813           globals.spinloop_iterations.load(std::memory_order_relaxed) == 0)) {
1814     if (absl::base_internal::NumCPUs() > 1) {
1815       // If this is multiprocessor, allow spinning.
1816       globals.spinloop_iterations.store(1500, std::memory_order_relaxed);
1817     } else {
1818       // If this a uniprocessor, only yield/sleep.
1819       globals.spinloop_iterations.store(-1, std::memory_order_relaxed);
1820     }
1821   }
1822   ABSL_RAW_CHECK(
1823       this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
1824       "condition untrue on return from LockSlow");
1825 }
1826 
1827 // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
EvalConditionAnnotated(const Condition * cond,Mutex * mu,bool locking,bool trylock,bool read_lock)1828 static inline bool EvalConditionAnnotated(const Condition* cond, Mutex* mu,
1829                                           bool locking, bool trylock,
1830                                           bool read_lock) {
1831   // Delicate annotation dance.
1832   // We are currently inside of read/write lock/unlock operation.
1833   // All memory accesses are ignored inside of mutex operations + for unlock
1834   // operation tsan considers that we've already released the mutex.
1835   bool res = false;
1836 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
1837   const uint32_t flags = read_lock ? __tsan_mutex_read_lock : 0;
1838   const uint32_t tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
1839 #endif
1840   if (locking) {
1841     // For lock we pretend that we have finished the operation,
1842     // evaluate the predicate, then unlock the mutex and start locking it again
1843     // to match the annotation at the end of outer lock operation.
1844     // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
1845     // will think the lock acquisition is recursive which will trigger
1846     // deadlock detector.
1847     ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
1848     res = cond->Eval();
1849     // There is no "try" version of Unlock, so use flags instead of tryflags.
1850     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1851     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1852     ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
1853   } else {
1854     // Similarly, for unlock we pretend that we have unlocked the mutex,
1855     // lock the mutex, evaluate the predicate, and start unlocking it again
1856     // to match the annotation at the end of outer unlock operation.
1857     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1858     ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
1859     ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
1860     res = cond->Eval();
1861     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1862   }
1863   // Prevent unused param warnings in non-TSAN builds.
1864   static_cast<void>(mu);
1865   static_cast<void>(trylock);
1866   static_cast<void>(read_lock);
1867   return res;
1868 }
1869 
1870 // Compute cond->Eval() hiding it from race detectors.
1871 // We are hiding it because inside of UnlockSlow we can evaluate a predicate
1872 // that was just added by a concurrent Lock operation; Lock adds the predicate
1873 // to the internal Mutex list without actually acquiring the Mutex
1874 // (it only acquires the internal spinlock, which is rightfully invisible for
1875 // tsan). As the result there is no tsan-visible synchronization between the
1876 // addition and this thread. So if we would enable race detection here,
1877 // it would race with the predicate initialization.
EvalConditionIgnored(Mutex * mu,const Condition * cond)1878 static inline bool EvalConditionIgnored(Mutex* mu, const Condition* cond) {
1879   // Memory accesses are already ignored inside of lock/unlock operations,
1880   // but synchronization operations are also ignored. When we evaluate the
1881   // predicate we must ignore only memory accesses but not synchronization,
1882   // because missed synchronization can lead to false reports later.
1883   // So we "divert" (which un-ignores both memory accesses and synchronization)
1884   // and then separately turn on ignores of memory accesses.
1885   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
1886   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1887   bool res = cond->Eval();
1888   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1889   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
1890   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
1891   return res;
1892 }
1893 
1894 // Internal equivalent of *LockWhenWithDeadline(), where
1895 //   "t" represents the absolute timeout; !t.has_timeout() means "forever".
1896 //   "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
1897 // In flags, bits are ored together:
1898 // - kMuHasBlocked indicates that the client has already blocked on the call so
1899 //   the designated waker bit must be cleared and waiting writers should not
1900 //   obstruct this call
1901 // - kMuIsCond indicates that this is a conditional acquire (condition variable,
1902 //   Await,  LockWhen) so contention profiling should be suppressed.
LockSlowWithDeadline(MuHow how,const Condition * cond,KernelTimeout t,int flags)1903 bool Mutex::LockSlowWithDeadline(MuHow how, const Condition* cond,
1904                                  KernelTimeout t, int flags) {
1905   intptr_t v = mu_.load(std::memory_order_relaxed);
1906   bool unlock = false;
1907   if ((v & how->fast_need_zero) == 0 &&  // try fast acquire
1908       mu_.compare_exchange_strong(
1909           v,
1910           (how->fast_or |
1911            (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1912               how->fast_add,
1913           std::memory_order_acquire, std::memory_order_relaxed)) {
1914     if (cond == nullptr ||
1915         EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
1916       return true;
1917     }
1918     unlock = true;
1919   }
1920   SynchWaitParams waitp(how, cond, t, nullptr /*no cvmu*/,
1921                         Synch_GetPerThreadAnnotated(this),
1922                         nullptr /*no cv_word*/);
1923   if (cond != nullptr) {
1924     flags |= kMuIsCond;
1925   }
1926   if (unlock) {
1927     this->UnlockSlow(&waitp);
1928     this->Block(waitp.thread);
1929     flags |= kMuHasBlocked;
1930   }
1931   this->LockSlowLoop(&waitp, flags);
1932   return waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
1933          cond == nullptr ||
1934          EvalConditionAnnotated(cond, this, true, false, how == kShared);
1935 }
1936 
1937 // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
1938 // the printf-style argument list.   The format string must be a literal.
1939 // Arguments after the first are not evaluated unless the condition is true.
1940 #define RAW_CHECK_FMT(cond, ...)                                   \
1941   do {                                                             \
1942     if (ABSL_PREDICT_FALSE(!(cond))) {                             \
1943       ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
1944     }                                                              \
1945   } while (0)
1946 
CheckForMutexCorruption(intptr_t v,const char * label)1947 static void CheckForMutexCorruption(intptr_t v, const char* label) {
1948   // Test for either of two situations that should not occur in v:
1949   //   kMuWriter and kMuReader
1950   //   kMuWrWait and !kMuWait
1951   const uintptr_t w = static_cast<uintptr_t>(v ^ kMuWait);
1952   // By flipping that bit, we can now test for:
1953   //   kMuWriter and kMuReader in w
1954   //   kMuWrWait and kMuWait in w
1955   // We've chosen these two pairs of values to be so that they will overlap,
1956   // respectively, when the word is left shifted by three.  This allows us to
1957   // save a branch in the common (correct) case of them not being coincident.
1958   static_assert(kMuReader << 3 == kMuWriter, "must match");
1959   static_assert(kMuWait << 3 == kMuWrWait, "must match");
1960   if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
1961   RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
1962                 "%s: Mutex corrupt: both reader and writer lock held: %p",
1963                 label, reinterpret_cast<void*>(v));
1964   RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
1965                 "%s: Mutex corrupt: waiting writer with no waiters: %p", label,
1966                 reinterpret_cast<void*>(v));
1967   assert(false);
1968 }
1969 
LockSlowLoop(SynchWaitParams * waitp,int flags)1970 void Mutex::LockSlowLoop(SynchWaitParams* waitp, int flags) {
1971   SchedulingGuard::ScopedDisable disable_rescheduling;
1972   int c = 0;
1973   intptr_t v = mu_.load(std::memory_order_relaxed);
1974   if ((v & kMuEvent) != 0) {
1975     PostSynchEvent(
1976         this, waitp->how == kExclusive ? SYNCH_EV_LOCK : SYNCH_EV_READERLOCK);
1977   }
1978   ABSL_RAW_CHECK(
1979       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
1980       "detected illegal recursion into Mutex code");
1981   for (;;) {
1982     v = mu_.load(std::memory_order_relaxed);
1983     CheckForMutexCorruption(v, "Lock");
1984     if ((v & waitp->how->slow_need_zero) == 0) {
1985       if (mu_.compare_exchange_strong(
1986               v,
1987               (waitp->how->fast_or |
1988                (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1989                   waitp->how->fast_add,
1990               std::memory_order_acquire, std::memory_order_relaxed)) {
1991         if (waitp->cond == nullptr ||
1992             EvalConditionAnnotated(waitp->cond, this, true, false,
1993                                    waitp->how == kShared)) {
1994           break;  // we timed out, or condition true, so return
1995         }
1996         this->UnlockSlow(waitp);  // got lock but condition false
1997         this->Block(waitp->thread);
1998         flags |= kMuHasBlocked;
1999         c = 0;
2000       }
2001     } else {  // need to access waiter list
2002       bool dowait = false;
2003       if ((v & (kMuSpin | kMuWait)) == 0) {  // no waiters
2004         // This thread tries to become the one and only waiter.
2005         PerThreadSynch* new_h = Enqueue(nullptr, waitp, v, flags);
2006         intptr_t nv =
2007             (v & ClearDesignatedWakerMask(flags & kMuHasBlocked) & kMuLow) |
2008             kMuWait;
2009         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
2010         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
2011           nv |= kMuWrWait;
2012         }
2013         if (mu_.compare_exchange_strong(
2014                 v, reinterpret_cast<intptr_t>(new_h) | nv,
2015                 std::memory_order_release, std::memory_order_relaxed)) {
2016           dowait = true;
2017         } else {  // attempted Enqueue() failed
2018           // zero out the waitp field set by Enqueue()
2019           waitp->thread->waitp = nullptr;
2020         }
2021       } else if ((v & waitp->how->slow_inc_need_zero &
2022                   IgnoreWaitingWritersMask(flags & kMuHasBlocked)) == 0) {
2023         // This is a reader that needs to increment the reader count,
2024         // but the count is currently held in the last waiter.
2025         if (mu_.compare_exchange_strong(
2026                 v,
2027                 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
2028                     kMuSpin | kMuReader,
2029                 std::memory_order_acquire, std::memory_order_relaxed)) {
2030           PerThreadSynch* h = GetPerThreadSynch(v);
2031           h->readers += kMuOne;  // inc reader count in waiter
2032           do {                   // release spinlock
2033             v = mu_.load(std::memory_order_relaxed);
2034           } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
2035                                               std::memory_order_release,
2036                                               std::memory_order_relaxed));
2037           if (waitp->cond == nullptr ||
2038               EvalConditionAnnotated(waitp->cond, this, true, false,
2039                                      waitp->how == kShared)) {
2040             break;  // we timed out, or condition true, so return
2041           }
2042           this->UnlockSlow(waitp);  // got lock but condition false
2043           this->Block(waitp->thread);
2044           flags |= kMuHasBlocked;
2045           c = 0;
2046         }
2047       } else if ((v & kMuSpin) == 0 &&  // attempt to queue ourselves
2048                  mu_.compare_exchange_strong(
2049                      v,
2050                      (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
2051                          kMuSpin | kMuWait,
2052                      std::memory_order_acquire, std::memory_order_relaxed)) {
2053         PerThreadSynch* h = GetPerThreadSynch(v);
2054         PerThreadSynch* new_h = Enqueue(h, waitp, v, flags);
2055         intptr_t wr_wait = 0;
2056         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
2057         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
2058           wr_wait = kMuWrWait;  // give priority to a waiting writer
2059         }
2060         do {  // release spinlock
2061           v = mu_.load(std::memory_order_relaxed);
2062         } while (!mu_.compare_exchange_weak(
2063             v,
2064             (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
2065                 reinterpret_cast<intptr_t>(new_h),
2066             std::memory_order_release, std::memory_order_relaxed));
2067         dowait = true;
2068       }
2069       if (dowait) {
2070         this->Block(waitp->thread);  // wait until removed from list or timeout
2071         flags |= kMuHasBlocked;
2072         c = 0;
2073       }
2074     }
2075     ABSL_RAW_CHECK(
2076         waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2077         "detected illegal recursion into Mutex code");
2078     // delay, then try again
2079     c = synchronization_internal::MutexDelay(c, GENTLE);
2080   }
2081   ABSL_RAW_CHECK(
2082       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2083       "detected illegal recursion into Mutex code");
2084   if ((v & kMuEvent) != 0) {
2085     PostSynchEvent(this, waitp->how == kExclusive
2086                              ? SYNCH_EV_LOCK_RETURNING
2087                              : SYNCH_EV_READERLOCK_RETURNING);
2088   }
2089 }
2090 
2091 // Unlock this mutex, which is held by the current thread.
2092 // If waitp is non-zero, it must be the wait parameters for the current thread
2093 // which holds the lock but is not runnable because its condition is false
2094 // or it is in the process of blocking on a condition variable; it must requeue
2095 // itself on the mutex/condvar to wait for its condition to become true.
UnlockSlow(SynchWaitParams * waitp)2096 ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams* waitp) {
2097   SchedulingGuard::ScopedDisable disable_rescheduling;
2098   intptr_t v = mu_.load(std::memory_order_relaxed);
2099   this->AssertReaderHeld();
2100   CheckForMutexCorruption(v, "Unlock");
2101   if ((v & kMuEvent) != 0) {
2102     PostSynchEvent(
2103         this, (v & kMuWriter) != 0 ? SYNCH_EV_UNLOCK : SYNCH_EV_READERUNLOCK);
2104   }
2105   int c = 0;
2106   // the waiter under consideration to wake, or zero
2107   PerThreadSynch* w = nullptr;
2108   // the predecessor to w or zero
2109   PerThreadSynch* pw = nullptr;
2110   // head of the list searched previously, or zero
2111   PerThreadSynch* old_h = nullptr;
2112   // a condition that's known to be false.
2113   PerThreadSynch* wake_list = kPerThreadSynchNull;  // list of threads to wake
2114   intptr_t wr_wait = 0;  // set to kMuWrWait if we wake a reader and a
2115                          // later writer could have acquired the lock
2116                          // (starvation avoidance)
2117   ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
2118                      waitp->thread->suppress_fatal_errors,
2119                  "detected illegal recursion into Mutex code");
2120   // This loop finds threads wake_list to wakeup if any, and removes them from
2121   // the list of waiters.  In addition, it places waitp.thread on the queue of
2122   // waiters if waitp is non-zero.
2123   for (;;) {
2124     v = mu_.load(std::memory_order_relaxed);
2125     if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
2126         waitp == nullptr) {
2127       // fast writer release (writer with no waiters or with designated waker)
2128       if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
2129                                       std::memory_order_release,
2130                                       std::memory_order_relaxed)) {
2131         return;
2132       }
2133     } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
2134       // fast reader release (reader with no waiters)
2135       intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
2136       if (mu_.compare_exchange_strong(v, v - clear, std::memory_order_release,
2137                                       std::memory_order_relaxed)) {
2138         return;
2139       }
2140     } else if ((v & kMuSpin) == 0 &&  // attempt to get spinlock
2141                mu_.compare_exchange_strong(v, v | kMuSpin,
2142                                            std::memory_order_acquire,
2143                                            std::memory_order_relaxed)) {
2144       if ((v & kMuWait) == 0) {  // no one to wake
2145         intptr_t nv;
2146         bool do_enqueue = true;  // always Enqueue() the first time
2147         ABSL_RAW_CHECK(waitp != nullptr,
2148                        "UnlockSlow is confused");  // about to sleep
2149         do {  // must loop to release spinlock as reader count may change
2150           v = mu_.load(std::memory_order_relaxed);
2151           // decrement reader count if there are readers
2152           intptr_t new_readers = (v >= kMuOne) ? v - kMuOne : v;
2153           PerThreadSynch* new_h = nullptr;
2154           if (do_enqueue) {
2155             // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
2156             // we must not retry here.  The initial attempt will always have
2157             // succeeded, further attempts would enqueue us against *this due to
2158             // Fer() handling.
2159             do_enqueue = (waitp->cv_word == nullptr);
2160             new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
2161           }
2162           intptr_t clear = kMuWrWait | kMuWriter;  // by default clear write bit
2163           if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) {  // last reader
2164             clear = kMuWrWait | kMuReader;                    // clear read bit
2165           }
2166           nv = (v & kMuLow & ~clear & ~kMuSpin);
2167           if (new_h != nullptr) {
2168             nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2169           } else {  // new_h could be nullptr if we queued ourselves on a
2170                     // CondVar
2171             // In that case, we must place the reader count back in the mutex
2172             // word, as Enqueue() did not store it in the new waiter.
2173             nv |= new_readers & kMuHigh;
2174           }
2175           // release spinlock & our lock; retry if reader-count changed
2176           // (writer count cannot change since we hold lock)
2177         } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release,
2178                                             std::memory_order_relaxed));
2179         break;
2180       }
2181 
2182       // There are waiters.
2183       // Set h to the head of the circular waiter list.
2184       PerThreadSynch* h = GetPerThreadSynch(v);
2185       if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
2186         // a reader but not the last
2187         h->readers -= kMuOne;    // release our lock
2188         intptr_t nv = v;         // normally just release spinlock
2189         if (waitp != nullptr) {  // but waitp!=nullptr => must queue ourselves
2190           PerThreadSynch* new_h = Enqueue(h, waitp, v, kMuIsCond);
2191           ABSL_RAW_CHECK(new_h != nullptr,
2192                          "waiters disappeared during Enqueue()!");
2193           nv &= kMuLow;
2194           nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2195         }
2196         mu_.store(nv, std::memory_order_release);  // release spinlock
2197         // can release with a store because there were waiters
2198         break;
2199       }
2200 
2201       // Either we didn't search before, or we marked the queue
2202       // as "maybe_unlocking" and no one else should have changed it.
2203       ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
2204                      "Mutex queue changed beneath us");
2205 
2206       // The lock is becoming free, and there's a waiter
2207       if (old_h != nullptr &&
2208           !old_h->may_skip) {    // we used old_h as a terminator
2209         old_h->may_skip = true;  // allow old_h to skip once more
2210         ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
2211         if (h != old_h && MuEquivalentWaiter(old_h, old_h->next)) {
2212           old_h->skip = old_h->next;  // old_h not head & can skip to successor
2213         }
2214       }
2215       if (h->next->waitp->how == kExclusive &&
2216           h->next->waitp->cond == nullptr) {
2217         // easy case: writer with no condition; no need to search
2218         pw = h;  // wake w, the successor of h (=pw)
2219         w = h->next;
2220         w->wake = true;
2221         // We are waking up a writer.  This writer may be racing against
2222         // an already awake reader for the lock.  We want the
2223         // writer to usually win this race,
2224         // because if it doesn't, we can potentially keep taking a reader
2225         // perpetually and writers will starve.  Worse than
2226         // that, this can also starve other readers if kMuWrWait gets set
2227         // later.
2228         wr_wait = kMuWrWait;
2229       } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
2230         // we found a waiter w to wake on a previous iteration and either it's
2231         // a writer, or we've searched the entire list so we have all the
2232         // readers.
2233         if (pw == nullptr) {  // if w's predecessor is unknown, it must be h
2234           pw = h;
2235         }
2236       } else {
2237         // At this point we don't know all the waiters to wake, and the first
2238         // waiter has a condition or is a reader.  We avoid searching over
2239         // waiters we've searched on previous iterations by starting at
2240         // old_h if it's set.  If old_h==h, there's no one to wakeup at all.
2241         if (old_h == h) {  // we've searched before, and nothing's new
2242                            // so there's no one to wake.
2243           intptr_t nv = (v & ~(kMuReader | kMuWriter | kMuWrWait));
2244           h->readers = 0;
2245           h->maybe_unlocking = false;  // finished unlocking
2246           if (waitp != nullptr) {      // we must queue ourselves and sleep
2247             PerThreadSynch* new_h = Enqueue(h, waitp, v, kMuIsCond);
2248             nv &= kMuLow;
2249             if (new_h != nullptr) {
2250               nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2251             }  // else new_h could be nullptr if we queued ourselves on a
2252                // CondVar
2253           }
2254           // release spinlock & lock
2255           // can release with a store because there were waiters
2256           mu_.store(nv, std::memory_order_release);
2257           break;
2258         }
2259 
2260         // set up to walk the list
2261         PerThreadSynch* w_walk;   // current waiter during list walk
2262         PerThreadSynch* pw_walk;  // previous waiter during list walk
2263         if (old_h != nullptr) {  // we've searched up to old_h before
2264           pw_walk = old_h;
2265           w_walk = old_h->next;
2266         } else {  // no prior search, start at beginning
2267           pw_walk =
2268               nullptr;  // h->next's predecessor may change; don't record it
2269           w_walk = h->next;
2270         }
2271 
2272         h->may_skip = false;  // ensure we never skip past h in future searches
2273                               // even if other waiters are queued after it.
2274         ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
2275 
2276         h->maybe_unlocking = true;  // we're about to scan the waiter list
2277                                     // without the spinlock held.
2278                                     // Enqueue must be conservative about
2279                                     // priority queuing.
2280 
2281         // We must release the spinlock to evaluate the conditions.
2282         mu_.store(v, std::memory_order_release);  // release just spinlock
2283         // can release with a store because there were waiters
2284 
2285         // h is the last waiter queued, and w_walk the first unsearched waiter.
2286         // Without the spinlock, the locations mu_ and h->next may now change
2287         // underneath us, but since we hold the lock itself, the only legal
2288         // change is to add waiters between h and w_walk.  Therefore, it's safe
2289         // to walk the path from w_walk to h inclusive. (TryRemove() can remove
2290         // a waiter anywhere, but it acquires both the spinlock and the Mutex)
2291 
2292         old_h = h;  // remember we searched to here
2293 
2294         // Walk the path upto and including h looking for waiters we can wake.
2295         while (pw_walk != h) {
2296           w_walk->wake = false;
2297           if (w_walk->waitp->cond ==
2298                   nullptr ||  // no condition => vacuously true OR
2299                               // this thread's condition is true
2300               EvalConditionIgnored(this, w_walk->waitp->cond)) {
2301             if (w == nullptr) {
2302               w_walk->wake = true;  // can wake this waiter
2303               w = w_walk;
2304               pw = pw_walk;
2305               if (w_walk->waitp->how == kExclusive) {
2306                 wr_wait = kMuWrWait;
2307                 break;  // bail if waking this writer
2308               }
2309             } else if (w_walk->waitp->how == kShared) {  // wake if a reader
2310               w_walk->wake = true;
2311             } else {  // writer with true condition
2312               wr_wait = kMuWrWait;
2313             }
2314           }
2315           if (w_walk->wake) {  // we're waking reader w_walk
2316             pw_walk = w_walk;  // don't skip similar waiters
2317           } else {             // not waking; skip as much as possible
2318             pw_walk = Skip(w_walk);
2319           }
2320           // If pw_walk == h, then load of pw_walk->next can race with
2321           // concurrent write in Enqueue(). However, at the same time
2322           // we do not need to do the load, because we will bail out
2323           // from the loop anyway.
2324           if (pw_walk != h) {
2325             w_walk = pw_walk->next;
2326           }
2327         }
2328 
2329         continue;  // restart for(;;)-loop to wakeup w or to find more waiters
2330       }
2331       ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
2332       // The first (and perhaps only) waiter we've chosen to wake is w, whose
2333       // predecessor is pw.  If w is a reader, we must wake all the other
2334       // waiters with wake==true as well.  We may also need to queue
2335       // ourselves if waitp != null.  The spinlock and the lock are still
2336       // held.
2337 
2338       // This traverses the list in [ pw->next, h ], where h is the head,
2339       // removing all elements with wake==true and placing them in the
2340       // singly-linked list wake_list.  Returns the new head.
2341       h = DequeueAllWakeable(h, pw, &wake_list);
2342 
2343       intptr_t nv = (v & kMuEvent) | kMuDesig;
2344       // assume no waiters left,
2345       // set kMuDesig for INV1a
2346 
2347       if (waitp != nullptr) {  // we must queue ourselves and sleep
2348         h = Enqueue(h, waitp, v, kMuIsCond);
2349         // h is new last waiter; could be null if we queued ourselves on a
2350         // CondVar
2351       }
2352 
2353       ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
2354                      "unexpected empty wake list");
2355 
2356       if (h != nullptr) {  // there are waiters left
2357         h->readers = 0;
2358         h->maybe_unlocking = false;  // finished unlocking
2359         nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
2360       }
2361 
2362       // release both spinlock & lock
2363       // can release with a store because there were waiters
2364       mu_.store(nv, std::memory_order_release);
2365       break;  // out of for(;;)-loop
2366     }
2367     // aggressive here; no one can proceed till we do
2368     c = synchronization_internal::MutexDelay(c, AGGRESSIVE);
2369   }  // end of for(;;)-loop
2370 
2371   if (wake_list != kPerThreadSynchNull) {
2372     int64_t total_wait_cycles = 0;
2373     int64_t max_wait_cycles = 0;
2374     int64_t now = CycleClock::Now();
2375     do {
2376       // Profile lock contention events only if the waiter was trying to acquire
2377       // the lock, not waiting on a condition variable or Condition.
2378       if (!wake_list->cond_waiter) {
2379         int64_t cycles_waited =
2380             (now - wake_list->waitp->contention_start_cycles);
2381         total_wait_cycles += cycles_waited;
2382         if (max_wait_cycles == 0) max_wait_cycles = cycles_waited;
2383         wake_list->waitp->contention_start_cycles = now;
2384         wake_list->waitp->should_submit_contention_data = true;
2385       }
2386       wake_list = Wakeup(wake_list);  // wake waiters
2387     } while (wake_list != kPerThreadSynchNull);
2388     if (total_wait_cycles > 0) {
2389       mutex_tracer("slow release", this, total_wait_cycles);
2390       ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
2391       submit_profile_data(total_wait_cycles);
2392       ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
2393     }
2394   }
2395 }
2396 
2397 // Used by CondVar implementation to reacquire mutex after waking from
2398 // condition variable.  This routine is used instead of Lock() because the
2399 // waiting thread may have been moved from the condition variable queue to the
2400 // mutex queue without a wakeup, by Trans().  In that case, when the thread is
2401 // finally woken, the woken thread will believe it has been woken from the
2402 // condition variable (i.e. its PC will be in when in the CondVar code), when
2403 // in fact it has just been woken from the mutex.  Thus, it must enter the slow
2404 // path of the mutex in the same state as if it had just woken from the mutex.
2405 // That is, it must ensure to clear kMuDesig (INV1b).
Trans(MuHow how)2406 void Mutex::Trans(MuHow how) {
2407   this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
2408 }
2409 
2410 // Used by CondVar implementation to effectively wake thread w from the
2411 // condition variable.  If this mutex is free, we simply wake the thread.
2412 // It will later acquire the mutex with high probability.  Otherwise, we
2413 // enqueue thread w on this mutex.
Fer(PerThreadSynch * w)2414 void Mutex::Fer(PerThreadSynch* w) {
2415   SchedulingGuard::ScopedDisable disable_rescheduling;
2416   int c = 0;
2417   ABSL_RAW_CHECK(w->waitp->cond == nullptr,
2418                  "Mutex::Fer while waiting on Condition");
2419   ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
2420                  "Mutex::Fer with pending CondVar queueing");
2421   // The CondVar timeout is not relevant for the Mutex wait.
2422   w->waitp->timeout = {};
2423   for (;;) {
2424     intptr_t v = mu_.load(std::memory_order_relaxed);
2425     // Note: must not queue if the mutex is unlocked (nobody will wake it).
2426     // For example, we can have only kMuWait (conditional) or maybe
2427     // kMuWait|kMuWrWait.
2428     // conflicting != 0 implies that the waking thread cannot currently take
2429     // the mutex, which in turn implies that someone else has it and can wake
2430     // us if we queue.
2431     const intptr_t conflicting =
2432         kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
2433     if ((v & conflicting) == 0) {
2434       w->next = nullptr;
2435       w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2436       IncrementSynchSem(this, w);
2437       return;
2438     } else {
2439       if ((v & (kMuSpin | kMuWait)) == 0) {  // no waiters
2440         // This thread tries to become the one and only waiter.
2441         PerThreadSynch* new_h =
2442             Enqueue(nullptr, w->waitp, v, kMuIsCond | kMuIsFer);
2443         ABSL_RAW_CHECK(new_h != nullptr,
2444                        "Enqueue failed");  // we must queue ourselves
2445         if (mu_.compare_exchange_strong(
2446                 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
2447                 std::memory_order_release, std::memory_order_relaxed)) {
2448           return;
2449         }
2450       } else if ((v & kMuSpin) == 0 &&
2451                  mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
2452         PerThreadSynch* h = GetPerThreadSynch(v);
2453         PerThreadSynch* new_h = Enqueue(h, w->waitp, v, kMuIsCond | kMuIsFer);
2454         ABSL_RAW_CHECK(new_h != nullptr,
2455                        "Enqueue failed");  // we must queue ourselves
2456         do {
2457           v = mu_.load(std::memory_order_relaxed);
2458         } while (!mu_.compare_exchange_weak(
2459             v,
2460             (v & kMuLow & ~kMuSpin) | kMuWait |
2461                 reinterpret_cast<intptr_t>(new_h),
2462             std::memory_order_release, std::memory_order_relaxed));
2463         return;
2464       }
2465     }
2466     c = synchronization_internal::MutexDelay(c, GENTLE);
2467   }
2468 }
2469 
AssertHeld() const2470 void Mutex::AssertHeld() const {
2471   if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
2472     SynchEvent* e = GetSynchEvent(this);
2473     ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
2474                  static_cast<const void*>(this), (e == nullptr ? "" : e->name));
2475   }
2476 }
2477 
AssertReaderHeld() const2478 void Mutex::AssertReaderHeld() const {
2479   if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
2480     SynchEvent* e = GetSynchEvent(this);
2481     ABSL_RAW_LOG(FATAL,
2482                  "thread should hold at least a read lock on Mutex %p %s",
2483                  static_cast<const void*>(this), (e == nullptr ? "" : e->name));
2484   }
2485 }
2486 
2487 // -------------------------------- condition variables
2488 static const intptr_t kCvSpin = 0x0001L;   // spinlock protects waiter list
2489 static const intptr_t kCvEvent = 0x0002L;  // record events
2490 
2491 static const intptr_t kCvLow = 0x0003L;  // low order bits of CV
2492 
2493 // Hack to make constant values available to gdb pretty printer
2494 enum {
2495   kGdbCvSpin = kCvSpin,
2496   kGdbCvEvent = kCvEvent,
2497   kGdbCvLow = kCvLow,
2498 };
2499 
2500 static_assert(PerThreadSynch::kAlignment > kCvLow,
2501               "PerThreadSynch::kAlignment must be greater than kCvLow");
2502 
EnableDebugLog(const char * name)2503 void CondVar::EnableDebugLog(const char* name) {
2504   SynchEvent* e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
2505   e->log = true;
2506   UnrefSynchEvent(e);
2507 }
2508 
2509 // Remove thread s from the list of waiters on this condition variable.
Remove(PerThreadSynch * s)2510 void CondVar::Remove(PerThreadSynch* s) {
2511   SchedulingGuard::ScopedDisable disable_rescheduling;
2512   intptr_t v;
2513   int c = 0;
2514   for (v = cv_.load(std::memory_order_relaxed);;
2515        v = cv_.load(std::memory_order_relaxed)) {
2516     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
2517         cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire,
2518                                     std::memory_order_relaxed)) {
2519       PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2520       if (h != nullptr) {
2521         PerThreadSynch* w = h;
2522         while (w->next != s && w->next != h) {  // search for thread
2523           w = w->next;
2524         }
2525         if (w->next == s) {  // found thread; remove it
2526           w->next = s->next;
2527           if (h == s) {
2528             h = (w == s) ? nullptr : w;
2529           }
2530           s->next = nullptr;
2531           s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2532         }
2533       }
2534       // release spinlock
2535       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2536                 std::memory_order_release);
2537       return;
2538     } else {
2539       // try again after a delay
2540       c = synchronization_internal::MutexDelay(c, GENTLE);
2541     }
2542   }
2543 }
2544 
2545 // Queue thread waitp->thread on condition variable word cv_word using
2546 // wait parameters waitp.
2547 // We split this into a separate routine, rather than simply doing it as part
2548 // of WaitCommon().  If we were to queue ourselves on the condition variable
2549 // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
2550 // the logging code, or via a Condition function) and might potentially attempt
2551 // to block this thread.  That would be a problem if the thread were already on
2552 // a condition variable waiter queue.  Thus, we use the waitp->cv_word to tell
2553 // the unlock code to call CondVarEnqueue() to queue the thread on the condition
2554 // variable queue just before the mutex is to be unlocked, and (most
2555 // importantly) after any call to an external routine that might re-enter the
2556 // mutex code.
CondVarEnqueue(SynchWaitParams * waitp)2557 static void CondVarEnqueue(SynchWaitParams* waitp) {
2558   // This thread might be transferred to the Mutex queue by Fer() when
2559   // we are woken.  To make sure that is what happens, Enqueue() doesn't
2560   // call CondVarEnqueue() again but instead uses its normal code.  We
2561   // must do this before we queue ourselves so that cv_word will be null
2562   // when seen by the dequeuer, who may wish immediately to requeue
2563   // this thread on another queue.
2564   std::atomic<intptr_t>* cv_word = waitp->cv_word;
2565   waitp->cv_word = nullptr;
2566 
2567   intptr_t v = cv_word->load(std::memory_order_relaxed);
2568   int c = 0;
2569   while ((v & kCvSpin) != 0 ||  // acquire spinlock
2570          !cv_word->compare_exchange_weak(v, v | kCvSpin,
2571                                          std::memory_order_acquire,
2572                                          std::memory_order_relaxed)) {
2573     c = synchronization_internal::MutexDelay(c, GENTLE);
2574     v = cv_word->load(std::memory_order_relaxed);
2575   }
2576   ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
2577   waitp->thread->waitp = waitp;  // prepare ourselves for waiting
2578   PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2579   if (h == nullptr) {  // add this thread to waiter list
2580     waitp->thread->next = waitp->thread;
2581   } else {
2582     waitp->thread->next = h->next;
2583     h->next = waitp->thread;
2584   }
2585   waitp->thread->state.store(PerThreadSynch::kQueued,
2586                              std::memory_order_relaxed);
2587   cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
2588                  std::memory_order_release);
2589 }
2590 
WaitCommon(Mutex * mutex,KernelTimeout t)2591 bool CondVar::WaitCommon(Mutex* mutex, KernelTimeout t) {
2592   bool rc = false;  // return value; true iff we timed-out
2593 
2594   intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
2595   Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
2596   ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
2597 
2598   // maybe trace this call
2599   intptr_t v = cv_.load(std::memory_order_relaxed);
2600   cond_var_tracer("Wait", this);
2601   if ((v & kCvEvent) != 0) {
2602     PostSynchEvent(this, SYNCH_EV_WAIT);
2603   }
2604 
2605   // Release mu and wait on condition variable.
2606   SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
2607                         Synch_GetPerThreadAnnotated(mutex), &cv_);
2608   // UnlockSlow() will call CondVarEnqueue() just before releasing the
2609   // Mutex, thus queuing this thread on the condition variable.  See
2610   // CondVarEnqueue() for the reasons.
2611   mutex->UnlockSlow(&waitp);
2612 
2613   // wait for signal
2614   while (waitp.thread->state.load(std::memory_order_acquire) ==
2615          PerThreadSynch::kQueued) {
2616     if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
2617       // DecrementSynchSem returned due to timeout.
2618       // Now we will either (1) remove ourselves from the wait list in Remove
2619       // below, in which case Remove will set thread.state = kAvailable and
2620       // we will not call DecrementSynchSem again; or (2) Signal/SignalAll
2621       // has removed us concurrently and is calling Wakeup, which will set
2622       // thread.state = kAvailable and post to the semaphore.
2623       // It's important to reset the timeout for the case (2) because otherwise
2624       // we can live-lock in this loop since DecrementSynchSem will always
2625       // return immediately due to timeout, but Signal/SignalAll is not
2626       // necessary set thread.state = kAvailable yet (and is not scheduled
2627       // due to thread priorities or other scheduler artifacts).
2628       // Note this could also be resolved if Signal/SignalAll would set
2629       // thread.state = kAvailable while holding the wait list spin lock.
2630       // But this can't be easily done for SignalAll since it grabs the whole
2631       // wait list with a single compare-exchange and does not really grab
2632       // the spin lock.
2633       t = KernelTimeout::Never();
2634       this->Remove(waitp.thread);
2635       rc = true;
2636     }
2637   }
2638 
2639   ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
2640   waitp.thread->waitp = nullptr;  // cleanup
2641 
2642   // maybe trace this call
2643   cond_var_tracer("Unwait", this);
2644   if ((v & kCvEvent) != 0) {
2645     PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
2646   }
2647 
2648   // From synchronization point of view Wait is unlock of the mutex followed
2649   // by lock of the mutex. We've annotated start of unlock in the beginning
2650   // of the function. Now, finish unlock and annotate lock of the mutex.
2651   // (Trans is effectively lock).
2652   ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
2653   ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
2654   mutex->Trans(mutex_how);  // Reacquire mutex
2655   ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
2656   return rc;
2657 }
2658 
Signal()2659 void CondVar::Signal() {
2660   SchedulingGuard::ScopedDisable disable_rescheduling;
2661   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2662   intptr_t v;
2663   int c = 0;
2664   for (v = cv_.load(std::memory_order_relaxed); v != 0;
2665        v = cv_.load(std::memory_order_relaxed)) {
2666     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
2667         cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire,
2668                                     std::memory_order_relaxed)) {
2669       PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2670       PerThreadSynch* w = nullptr;
2671       if (h != nullptr) {  // remove first waiter
2672         w = h->next;
2673         if (w == h) {
2674           h = nullptr;
2675         } else {
2676           h->next = w->next;
2677         }
2678       }
2679       // release spinlock
2680       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2681                 std::memory_order_release);
2682       if (w != nullptr) {
2683         w->waitp->cvmu->Fer(w);  // wake waiter, if there was one
2684         cond_var_tracer("Signal wakeup", this);
2685       }
2686       if ((v & kCvEvent) != 0) {
2687         PostSynchEvent(this, SYNCH_EV_SIGNAL);
2688       }
2689       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2690       return;
2691     } else {
2692       c = synchronization_internal::MutexDelay(c, GENTLE);
2693     }
2694   }
2695   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2696 }
2697 
SignalAll()2698 void CondVar::SignalAll() {
2699   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2700   intptr_t v;
2701   int c = 0;
2702   for (v = cv_.load(std::memory_order_relaxed); v != 0;
2703        v = cv_.load(std::memory_order_relaxed)) {
2704     // empty the list if spinlock free
2705     // We do this by simply setting the list to empty using
2706     // compare and swap.   We then have the entire list in our hands,
2707     // which cannot be changing since we grabbed it while no one
2708     // held the lock.
2709     if ((v & kCvSpin) == 0 &&
2710         cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
2711                                     std::memory_order_relaxed)) {
2712       PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow);
2713       if (h != nullptr) {
2714         PerThreadSynch* w;
2715         PerThreadSynch* n = h->next;
2716         do {  // for every thread, wake it up
2717           w = n;
2718           n = n->next;
2719           w->waitp->cvmu->Fer(w);
2720         } while (w != h);
2721         cond_var_tracer("SignalAll wakeup", this);
2722       }
2723       if ((v & kCvEvent) != 0) {
2724         PostSynchEvent(this, SYNCH_EV_SIGNALALL);
2725       }
2726       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2727       return;
2728     } else {
2729       // try again after a delay
2730       c = synchronization_internal::MutexDelay(c, GENTLE);
2731     }
2732   }
2733   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2734 }
2735 
Release()2736 void ReleasableMutexLock::Release() {
2737   ABSL_RAW_CHECK(this->mu_ != nullptr,
2738                  "ReleasableMutexLock::Release may only be called once");
2739   this->mu_->Unlock();
2740   this->mu_ = nullptr;
2741 }
2742 
2743 #ifdef ABSL_HAVE_THREAD_SANITIZER
2744 extern "C" void __tsan_read1(void* addr);
2745 #else
2746 #define __tsan_read1(addr)  // do nothing if TSan not enabled
2747 #endif
2748 
2749 // A function that just returns its argument, dereferenced
Dereference(void * arg)2750 static bool Dereference(void* arg) {
2751   // ThreadSanitizer does not instrument this file for memory accesses.
2752   // This function dereferences a user variable that can participate
2753   // in a data race, so we need to manually tell TSan about this memory access.
2754   __tsan_read1(arg);
2755   return *(static_cast<bool*>(arg));
2756 }
2757 
2758 ABSL_CONST_INIT const Condition Condition::kTrue;
2759 
Condition(bool (* func)(void *),void * arg)2760 Condition::Condition(bool (*func)(void*), void* arg)
2761     : eval_(&CallVoidPtrFunction), arg_(arg) {
2762   static_assert(sizeof(&func) <= sizeof(callback_),
2763                 "An overlarge function pointer passed to Condition.");
2764   StoreCallback(func);
2765 }
2766 
CallVoidPtrFunction(const Condition * c)2767 bool Condition::CallVoidPtrFunction(const Condition* c) {
2768   using FunctionPointer = bool (*)(void*);
2769   FunctionPointer function_pointer;
2770   std::memcpy(&function_pointer, c->callback_, sizeof(function_pointer));
2771   return (*function_pointer)(c->arg_);
2772 }
2773 
Condition(const bool * cond)2774 Condition::Condition(const bool* cond)
2775     : eval_(CallVoidPtrFunction),
2776       // const_cast is safe since Dereference does not modify arg
2777       arg_(const_cast<bool*>(cond)) {
2778   using FunctionPointer = bool (*)(void*);
2779   const FunctionPointer dereference = Dereference;
2780   StoreCallback(dereference);
2781 }
2782 
Eval() const2783 bool Condition::Eval() const { return (*this->eval_)(this); }
2784 
GuaranteedEqual(const Condition * a,const Condition * b)2785 bool Condition::GuaranteedEqual(const Condition* a, const Condition* b) {
2786   if (a == nullptr || b == nullptr) {
2787     return a == b;
2788   }
2789   // Check equality of the representative fields.
2790   return a->eval_ == b->eval_ && a->arg_ == b->arg_ &&
2791          !memcmp(a->callback_, b->callback_, sizeof(a->callback_));
2792 }
2793 
2794 ABSL_NAMESPACE_END
2795 }  // namespace absl
2796