1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/cord.h"
16
17 #include <algorithm>
18 #include <array>
19 #include <cassert>
20 #include <cstddef>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstring>
24 #include <iostream>
25 #include <iterator>
26 #include <limits>
27 #include <random>
28 #include <set>
29 #include <sstream>
30 #include <string>
31 #include <type_traits>
32 #include <utility>
33 #include <vector>
34
35 #include "gmock/gmock.h"
36 #include "gtest/gtest.h"
37 #include "absl/base/attributes.h"
38 #include "absl/base/config.h"
39 #include "absl/base/internal/endian.h"
40 #include "absl/base/macros.h"
41 #include "absl/base/no_destructor.h"
42 #include "absl/base/options.h"
43 #include "absl/container/fixed_array.h"
44 #include "absl/functional/function_ref.h"
45 #include "absl/hash/hash.h"
46 #include "absl/hash/hash_testing.h"
47 #include "absl/log/check.h"
48 #include "absl/log/log.h"
49 #include "absl/random/random.h"
50 #include "absl/strings/cord_buffer.h"
51 #include "absl/strings/cord_test_helpers.h"
52 #include "absl/strings/cordz_test_helpers.h"
53 #include "absl/strings/internal/cord_internal.h"
54 #include "absl/strings/internal/cord_rep_crc.h"
55 #include "absl/strings/internal/cord_rep_flat.h"
56 #include "absl/strings/internal/cordz_statistics.h"
57 #include "absl/strings/internal/cordz_update_tracker.h"
58 #include "absl/strings/internal/string_constant.h"
59 #include "absl/strings/match.h"
60 #include "absl/strings/str_cat.h"
61 #include "absl/strings/str_format.h"
62 #include "absl/strings/string_view.h"
63 #include "absl/types/compare.h"
64 #include "absl/types/optional.h"
65
66 // convenience local constants
67 static constexpr auto FLAT = absl::cord_internal::FLAT;
68 static constexpr auto MAX_FLAT_TAG = absl::cord_internal::MAX_FLAT_TAG;
69
70 typedef std::mt19937_64 RandomEngine;
71
72 using absl::cord_internal::CordRep;
73 using absl::cord_internal::CordRepBtree;
74 using absl::cord_internal::CordRepConcat;
75 using absl::cord_internal::CordRepCrc;
76 using absl::cord_internal::CordRepExternal;
77 using absl::cord_internal::CordRepFlat;
78 using absl::cord_internal::CordRepSubstring;
79 using absl::cord_internal::CordzUpdateTracker;
80 using absl::cord_internal::kFlatOverhead;
81 using absl::cord_internal::kMaxFlatLength;
82 using ::testing::ElementsAre;
83 using ::testing::Le;
84
85 static std::string RandomLowercaseString(RandomEngine* rng);
86 static std::string RandomLowercaseString(RandomEngine* rng, size_t length);
87
GetUniformRandomUpTo(RandomEngine * rng,int upper_bound)88 static int GetUniformRandomUpTo(RandomEngine* rng, int upper_bound) {
89 if (upper_bound > 0) {
90 std::uniform_int_distribution<int> uniform(0, upper_bound - 1);
91 return uniform(*rng);
92 } else {
93 return 0;
94 }
95 }
96
GetUniformRandomUpTo(RandomEngine * rng,size_t upper_bound)97 static size_t GetUniformRandomUpTo(RandomEngine* rng, size_t upper_bound) {
98 if (upper_bound > 0) {
99 std::uniform_int_distribution<size_t> uniform(0, upper_bound - 1);
100 return uniform(*rng);
101 } else {
102 return 0;
103 }
104 }
105
GenerateSkewedRandom(RandomEngine * rng,int max_log)106 static int32_t GenerateSkewedRandom(RandomEngine* rng, int max_log) {
107 const uint32_t base = (*rng)() % (max_log + 1);
108 const uint32_t mask = ((base < 32) ? (1u << base) : 0u) - 1u;
109 return (*rng)() & mask;
110 }
111
RandomLowercaseString(RandomEngine * rng)112 static std::string RandomLowercaseString(RandomEngine* rng) {
113 int length;
114 std::bernoulli_distribution one_in_1k(0.001);
115 std::bernoulli_distribution one_in_10k(0.0001);
116 // With low probability, make a large fragment
117 if (one_in_10k(*rng)) {
118 length = GetUniformRandomUpTo(rng, 1048576);
119 } else if (one_in_1k(*rng)) {
120 length = GetUniformRandomUpTo(rng, 10000);
121 } else {
122 length = GenerateSkewedRandom(rng, 10);
123 }
124 return RandomLowercaseString(rng, length);
125 }
126
RandomLowercaseString(RandomEngine * rng,size_t length)127 static std::string RandomLowercaseString(RandomEngine* rng, size_t length) {
128 std::string result(length, '\0');
129 std::uniform_int_distribution<int> chars('a', 'z');
130 std::generate(result.begin(), result.end(),
131 [&]() { return static_cast<char>(chars(*rng)); });
132 return result;
133 }
134
DoNothing(absl::string_view,void *)135 static void DoNothing(absl::string_view /* data */, void* /* arg */) {}
136
DeleteExternalString(absl::string_view data,void * arg)137 static void DeleteExternalString(absl::string_view data, void* arg) {
138 std::string* s = reinterpret_cast<std::string*>(arg);
139 EXPECT_EQ(data, *s);
140 delete s;
141 }
142
143 // Add "s" to *dst via `MakeCordFromExternal`
AddExternalMemory(absl::string_view s,absl::Cord * dst)144 static void AddExternalMemory(absl::string_view s, absl::Cord* dst) {
145 std::string* str = new std::string(s.data(), s.size());
146 dst->Append(absl::MakeCordFromExternal(*str, [str](absl::string_view data) {
147 DeleteExternalString(data, str);
148 }));
149 }
150
DumpGrowth()151 static void DumpGrowth() {
152 absl::Cord str;
153 for (int i = 0; i < 1000; i++) {
154 char c = 'a' + i % 26;
155 str.Append(absl::string_view(&c, 1));
156 }
157 }
158
159 // Make a Cord with some number of fragments. Return the size (in bytes)
160 // of the smallest fragment.
AppendWithFragments(const std::string & s,RandomEngine * rng,absl::Cord * cord)161 static size_t AppendWithFragments(const std::string& s, RandomEngine* rng,
162 absl::Cord* cord) {
163 size_t j = 0;
164 const size_t max_size = s.size() / 5; // Make approx. 10 fragments
165 size_t min_size = max_size; // size of smallest fragment
166 while (j < s.size()) {
167 size_t N = 1 + GetUniformRandomUpTo(rng, max_size);
168 if (N > (s.size() - j)) {
169 N = s.size() - j;
170 }
171 if (N < min_size) {
172 min_size = N;
173 }
174
175 std::bernoulli_distribution coin_flip(0.5);
176 if (coin_flip(*rng)) {
177 // Grow by adding an external-memory.
178 AddExternalMemory(absl::string_view(s.data() + j, N), cord);
179 } else {
180 cord->Append(absl::string_view(s.data() + j, N));
181 }
182 j += N;
183 }
184 return min_size;
185 }
186
187 // Add an external memory that contains the specified std::string to cord
AddNewStringBlock(const std::string & str,absl::Cord * dst)188 static void AddNewStringBlock(const std::string& str, absl::Cord* dst) {
189 char* data = new char[str.size()];
190 memcpy(data, str.data(), str.size());
191 dst->Append(absl::MakeCordFromExternal(
192 absl::string_view(data, str.size()),
193 [](absl::string_view s) { delete[] s.data(); }));
194 }
195
196 // Make a Cord out of many different types of nodes.
MakeComposite()197 static absl::Cord MakeComposite() {
198 absl::Cord cord;
199 cord.Append("the");
200 AddExternalMemory(" quick brown", &cord);
201 AddExternalMemory(" fox jumped", &cord);
202
203 absl::Cord full(" over");
204 AddExternalMemory(" the lazy", &full);
205 AddNewStringBlock(" dog slept the whole day away", &full);
206 absl::Cord substring = full.Subcord(0, 18);
207
208 // Make substring long enough to defeat the copying fast path in Append.
209 substring.Append(std::string(1000, '.'));
210 cord.Append(substring);
211 cord = cord.Subcord(0, cord.size() - 998); // Remove most of extra junk
212
213 return cord;
214 }
215
216 namespace absl {
217 ABSL_NAMESPACE_BEGIN
218
219 class CordTestPeer {
220 public:
ForEachChunk(const Cord & c,absl::FunctionRef<void (absl::string_view)> callback)221 static void ForEachChunk(
222 const Cord& c, absl::FunctionRef<void(absl::string_view)> callback) {
223 c.ForEachChunk(callback);
224 }
225
IsTree(const Cord & c)226 static bool IsTree(const Cord& c) { return c.contents_.is_tree(); }
Tree(const Cord & c)227 static CordRep* Tree(const Cord& c) { return c.contents_.tree(); }
228
GetCordzInfo(const Cord & c)229 static cord_internal::CordzInfo* GetCordzInfo(const Cord& c) {
230 return c.contents_.cordz_info();
231 }
232
MakeSubstring(Cord src,size_t offset,size_t length)233 static Cord MakeSubstring(Cord src, size_t offset, size_t length) {
234 CHECK(src.contents_.is_tree()) << "Can not be inlined";
235 CHECK(!src.ExpectedChecksum().has_value()) << "Can not be hardened";
236 Cord cord;
237 auto* tree = cord_internal::SkipCrcNode(src.contents_.tree());
238 auto* rep = CordRepSubstring::Create(CordRep::Ref(tree), offset, length);
239 cord.contents_.EmplaceTree(rep, CordzUpdateTracker::kSubCord);
240 return cord;
241 }
242 };
243
244 ABSL_NAMESPACE_END
245 } // namespace absl
246
247
248
249 // The CordTest fixture runs all tests with and without expected CRCs being set
250 // on the subject Cords.
251 class CordTest : public testing::TestWithParam<bool /*useCrc*/> {
252 public:
253 // Returns true if test is running with Crc enabled.
UseCrc() const254 bool UseCrc() const { return GetParam(); }
MaybeHarden(absl::Cord & c)255 void MaybeHarden(absl::Cord& c) {
256 if (UseCrc()) {
257 c.SetExpectedChecksum(1);
258 }
259 }
MaybeHardened(absl::Cord c)260 absl::Cord MaybeHardened(absl::Cord c) {
261 MaybeHarden(c);
262 return c;
263 }
264
265 // Returns human readable string representation of the test parameter.
ToString(testing::TestParamInfo<bool> useCrc)266 static std::string ToString(testing::TestParamInfo<bool> useCrc) {
267 if (useCrc.param) {
268 return "BtreeHardened";
269 } else {
270 return "Btree";
271 }
272 }
273 };
274
275 INSTANTIATE_TEST_SUITE_P(WithParam, CordTest, testing::Bool(),
276 CordTest::ToString);
277
TEST(CordRepFlat,AllFlatCapacities)278 TEST(CordRepFlat, AllFlatCapacities) {
279 // Explicitly and redundantly assert built-in min/max limits
280 static_assert(absl::cord_internal::kFlatOverhead < 32, "");
281 static_assert(absl::cord_internal::kMinFlatSize == 32, "");
282 static_assert(absl::cord_internal::kMaxLargeFlatSize == 256 << 10, "");
283 EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(FLAT), 32);
284 EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(MAX_FLAT_TAG), 256 << 10);
285
286 // Verify all tags to map perfectly back and forth, and
287 // that sizes are monotonically increasing.
288 size_t last_size = 0;
289 for (int tag = FLAT; tag <= MAX_FLAT_TAG; ++tag) {
290 size_t size = absl::cord_internal::TagToAllocatedSize(tag);
291 ASSERT_GT(size, last_size);
292 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
293 last_size = size;
294 }
295
296 // All flat size from 32 - 512 are 8 byte granularity
297 for (size_t size = 32; size <= 512; size += 8) {
298 ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
299 uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
300 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
301 }
302
303 // All flat sizes from 512 - 8192 are 64 byte granularity
304 for (size_t size = 512; size <= 8192; size += 64) {
305 ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
306 uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
307 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
308 }
309
310 // All flat sizes from 8KB to 256KB are 4KB granularity
311 for (size_t size = 8192; size <= 256 * 1024; size += 4 * 1024) {
312 ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
313 uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
314 ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
315 }
316 }
317
TEST(CordRepFlat,MaxFlatSize)318 TEST(CordRepFlat, MaxFlatSize) {
319 CordRepFlat* flat = CordRepFlat::New(kMaxFlatLength);
320 EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
321 CordRep::Unref(flat);
322
323 flat = CordRepFlat::New(kMaxFlatLength * 4);
324 EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
325 CordRep::Unref(flat);
326 }
327
TEST(CordRepFlat,MaxLargeFlatSize)328 TEST(CordRepFlat, MaxLargeFlatSize) {
329 const size_t size = 256 * 1024 - kFlatOverhead;
330 CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), size);
331 EXPECT_GE(flat->Capacity(), size);
332 CordRep::Unref(flat);
333 }
334
TEST(CordRepFlat,AllFlatSizes)335 TEST(CordRepFlat, AllFlatSizes) {
336 const size_t kMaxSize = 256 * 1024;
337 for (size_t size = 32; size <= kMaxSize; size *=2) {
338 const size_t length = size - kFlatOverhead - 1;
339 CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), length);
340 EXPECT_GE(flat->Capacity(), length);
341 memset(flat->Data(), 0xCD, flat->Capacity());
342 CordRep::Unref(flat);
343 }
344 }
345
TEST_P(CordTest,AllFlatSizes)346 TEST_P(CordTest, AllFlatSizes) {
347 using absl::strings_internal::CordTestAccess;
348
349 for (size_t s = 0; s < CordTestAccess::MaxFlatLength(); s++) {
350 // Make a string of length s.
351 std::string src;
352 while (src.size() < s) {
353 src.push_back('a' + (src.size() % 26));
354 }
355
356 absl::Cord dst(src);
357 MaybeHarden(dst);
358 EXPECT_EQ(std::string(dst), src) << s;
359 }
360 }
361
362 // We create a Cord at least 128GB in size using the fact that Cords can
363 // internally reference-count; thus the Cord is enormous without actually
364 // consuming very much memory.
TEST_P(CordTest,GigabyteCordFromExternal)365 TEST_P(CordTest, GigabyteCordFromExternal) {
366 const size_t one_gig = 1024U * 1024U * 1024U;
367 size_t max_size = 2 * one_gig;
368 if (sizeof(max_size) > 4) max_size = 128 * one_gig;
369
370 size_t length = 128 * 1024;
371 char* data = new char[length];
372 absl::Cord from = absl::MakeCordFromExternal(
373 absl::string_view(data, length),
374 [](absl::string_view sv) { delete[] sv.data(); });
375
376 // This loop may seem odd due to its combination of exponential doubling of
377 // size and incremental size increases. We do it incrementally to be sure the
378 // Cord will need rebalancing and will exercise code that, in the past, has
379 // caused crashes in production. We grow exponentially so that the code will
380 // execute in a reasonable amount of time.
381 absl::Cord c;
382 c.Append(from);
383 while (c.size() < max_size) {
384 c.Append(c);
385 c.Append(from);
386 c.Append(from);
387 c.Append(from);
388 c.Append(from);
389 MaybeHarden(c);
390 }
391
392 for (int i = 0; i < 1024; ++i) {
393 c.Append(from);
394 }
395 LOG(INFO) << "Made a Cord with " << c.size() << " bytes!";
396 // Note: on a 32-bit build, this comes out to 2,818,048,000 bytes.
397 // Note: on a 64-bit build, this comes out to 171,932,385,280 bytes.
398 }
399
MakeExternalCord(int size)400 static absl::Cord MakeExternalCord(int size) {
401 char* buffer = new char[size];
402 memset(buffer, 'x', size);
403 absl::Cord cord;
404 cord.Append(absl::MakeCordFromExternal(
405 absl::string_view(buffer, size),
406 [](absl::string_view s) { delete[] s.data(); }));
407 return cord;
408 }
409
410 // Extern to fool clang that this is not constant. Needed to suppress
411 // a warning of unsafe code we want to test.
412 extern bool my_unique_true_boolean;
413 bool my_unique_true_boolean = true;
414
TEST_P(CordTest,Assignment)415 TEST_P(CordTest, Assignment) {
416 absl::Cord x(absl::string_view("hi there"));
417 absl::Cord y(x);
418 MaybeHarden(y);
419 ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
420 ASSERT_EQ(std::string(x), "hi there");
421 ASSERT_EQ(std::string(y), "hi there");
422 ASSERT_TRUE(x == y);
423 ASSERT_TRUE(x <= y);
424 ASSERT_TRUE(y <= x);
425
426 x = absl::string_view("foo");
427 ASSERT_EQ(std::string(x), "foo");
428 ASSERT_EQ(std::string(y), "hi there");
429 ASSERT_TRUE(x < y);
430 ASSERT_TRUE(y > x);
431 ASSERT_TRUE(x != y);
432 ASSERT_TRUE(x <= y);
433 ASSERT_TRUE(y >= x);
434
435 x = "foo";
436 ASSERT_EQ(x, "foo");
437
438 // Test that going from inline rep to tree we don't leak memory.
439 std::vector<std::pair<absl::string_view, absl::string_view>>
440 test_string_pairs = {{"hi there", "foo"},
441 {"loooooong coooooord", "short cord"},
442 {"short cord", "loooooong coooooord"},
443 {"loooooong coooooord1", "loooooong coooooord2"}};
444 for (std::pair<absl::string_view, absl::string_view> test_strings :
445 test_string_pairs) {
446 absl::Cord tmp(test_strings.first);
447 absl::Cord z(std::move(tmp));
448 ASSERT_EQ(std::string(z), test_strings.first);
449 tmp = test_strings.second;
450 z = std::move(tmp);
451 ASSERT_EQ(std::string(z), test_strings.second);
452 }
453 {
454 // Test that self-move assignment doesn't crash/leak.
455 // Do not write such code!
456 absl::Cord my_small_cord("foo");
457 absl::Cord my_big_cord("loooooong coooooord");
458 // Bypass clang's warning on self move-assignment.
459 absl::Cord* my_small_alias =
460 my_unique_true_boolean ? &my_small_cord : &my_big_cord;
461 absl::Cord* my_big_alias =
462 !my_unique_true_boolean ? &my_small_cord : &my_big_cord;
463
464 *my_small_alias = std::move(my_small_cord);
465 *my_big_alias = std::move(my_big_cord);
466 // my_small_cord and my_big_cord are in an unspecified but valid
467 // state, and will be correctly destroyed here.
468 }
469 }
470
TEST_P(CordTest,StartsEndsWith)471 TEST_P(CordTest, StartsEndsWith) {
472 absl::Cord x(absl::string_view("abcde"));
473 MaybeHarden(x);
474 absl::Cord empty("");
475
476 ASSERT_TRUE(x.StartsWith(absl::Cord("abcde")));
477 ASSERT_TRUE(x.StartsWith(absl::Cord("abc")));
478 ASSERT_TRUE(x.StartsWith(absl::Cord("")));
479 ASSERT_TRUE(empty.StartsWith(absl::Cord("")));
480 ASSERT_TRUE(x.EndsWith(absl::Cord("abcde")));
481 ASSERT_TRUE(x.EndsWith(absl::Cord("cde")));
482 ASSERT_TRUE(x.EndsWith(absl::Cord("")));
483 ASSERT_TRUE(empty.EndsWith(absl::Cord("")));
484
485 ASSERT_TRUE(!x.StartsWith(absl::Cord("xyz")));
486 ASSERT_TRUE(!empty.StartsWith(absl::Cord("xyz")));
487 ASSERT_TRUE(!x.EndsWith(absl::Cord("xyz")));
488 ASSERT_TRUE(!empty.EndsWith(absl::Cord("xyz")));
489
490 ASSERT_TRUE(x.StartsWith("abcde"));
491 ASSERT_TRUE(x.StartsWith("abc"));
492 ASSERT_TRUE(x.StartsWith(""));
493 ASSERT_TRUE(empty.StartsWith(""));
494 ASSERT_TRUE(x.EndsWith("abcde"));
495 ASSERT_TRUE(x.EndsWith("cde"));
496 ASSERT_TRUE(x.EndsWith(""));
497 ASSERT_TRUE(empty.EndsWith(""));
498
499 ASSERT_TRUE(!x.StartsWith("xyz"));
500 ASSERT_TRUE(!empty.StartsWith("xyz"));
501 ASSERT_TRUE(!x.EndsWith("xyz"));
502 ASSERT_TRUE(!empty.EndsWith("xyz"));
503 }
504
TEST_P(CordTest,Contains)505 TEST_P(CordTest, Contains) {
506 auto flat_haystack = absl::Cord("this is a flat cord");
507 auto fragmented_haystack = absl::MakeFragmentedCord(
508 {"this", " ", "is", " ", "a", " ", "fragmented", " ", "cord"});
509
510 EXPECT_TRUE(flat_haystack.Contains(""));
511 EXPECT_TRUE(fragmented_haystack.Contains(""));
512 EXPECT_TRUE(flat_haystack.Contains(absl::Cord("")));
513 EXPECT_TRUE(fragmented_haystack.Contains(absl::Cord("")));
514 EXPECT_TRUE(absl::Cord("").Contains(""));
515 EXPECT_TRUE(absl::Cord("").Contains(absl::Cord("")));
516 EXPECT_FALSE(absl::Cord("").Contains(flat_haystack));
517 EXPECT_FALSE(absl::Cord("").Contains(fragmented_haystack));
518
519 EXPECT_FALSE(flat_haystack.Contains("z"));
520 EXPECT_FALSE(fragmented_haystack.Contains("z"));
521 EXPECT_FALSE(flat_haystack.Contains(absl::Cord("z")));
522 EXPECT_FALSE(fragmented_haystack.Contains(absl::Cord("z")));
523
524 EXPECT_FALSE(flat_haystack.Contains("is an"));
525 EXPECT_FALSE(fragmented_haystack.Contains("is an"));
526 EXPECT_FALSE(flat_haystack.Contains(absl::Cord("is an")));
527 EXPECT_FALSE(fragmented_haystack.Contains(absl::Cord("is an")));
528 EXPECT_FALSE(
529 flat_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "an"})));
530 EXPECT_FALSE(fragmented_haystack.Contains(
531 absl::MakeFragmentedCord({"is", " ", "an"})));
532
533 EXPECT_TRUE(flat_haystack.Contains("is a"));
534 EXPECT_TRUE(fragmented_haystack.Contains("is a"));
535 EXPECT_TRUE(flat_haystack.Contains(absl::Cord("is a")));
536 EXPECT_TRUE(fragmented_haystack.Contains(absl::Cord("is a")));
537 EXPECT_TRUE(
538 flat_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "a"})));
539 EXPECT_TRUE(
540 fragmented_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "a"})));
541 }
542
TEST_P(CordTest,Find)543 TEST_P(CordTest, Find) {
544 auto flat_haystack = absl::Cord("this is a flat cord");
545 auto fragmented_haystack = absl::MakeFragmentedCord(
546 {"this", " ", "is", " ", "a", " ", "fragmented", " ", "cord"});
547 auto empty_haystack = absl::Cord("");
548
549 EXPECT_EQ(flat_haystack.Find(""), flat_haystack.char_begin());
550 EXPECT_EQ(fragmented_haystack.Find(""), fragmented_haystack.char_begin());
551 EXPECT_EQ(flat_haystack.Find(absl::Cord("")), flat_haystack.char_begin());
552 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("")),
553 fragmented_haystack.char_begin());
554 EXPECT_EQ(empty_haystack.Find(""), empty_haystack.char_begin());
555 EXPECT_EQ(empty_haystack.Find(absl::Cord("")), empty_haystack.char_begin());
556 EXPECT_EQ(empty_haystack.Find(flat_haystack), empty_haystack.char_end());
557 EXPECT_EQ(empty_haystack.Find(fragmented_haystack),
558 empty_haystack.char_end());
559
560 EXPECT_EQ(flat_haystack.Find("z"), flat_haystack.char_end());
561 EXPECT_EQ(fragmented_haystack.Find("z"), fragmented_haystack.char_end());
562 EXPECT_EQ(flat_haystack.Find(absl::Cord("z")), flat_haystack.char_end());
563 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("z")),
564 fragmented_haystack.char_end());
565
566 EXPECT_EQ(flat_haystack.Find("is an"), flat_haystack.char_end());
567 EXPECT_EQ(fragmented_haystack.Find("is an"), fragmented_haystack.char_end());
568 EXPECT_EQ(flat_haystack.Find(absl::Cord("is an")), flat_haystack.char_end());
569 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("is an")),
570 fragmented_haystack.char_end());
571 EXPECT_EQ(flat_haystack.Find(absl::MakeFragmentedCord({"is", " ", "an"})),
572 flat_haystack.char_end());
573 EXPECT_EQ(
574 fragmented_haystack.Find(absl::MakeFragmentedCord({"is", " ", "an"})),
575 fragmented_haystack.char_end());
576
577 EXPECT_EQ(flat_haystack.Find("is a"),
578 std::next(flat_haystack.char_begin(), 5));
579 EXPECT_EQ(fragmented_haystack.Find("is a"),
580 std::next(fragmented_haystack.char_begin(), 5));
581 EXPECT_EQ(flat_haystack.Find(absl::Cord("is a")),
582 std::next(flat_haystack.char_begin(), 5));
583 EXPECT_EQ(fragmented_haystack.Find(absl::Cord("is a")),
584 std::next(fragmented_haystack.char_begin(), 5));
585 EXPECT_EQ(flat_haystack.Find(absl::MakeFragmentedCord({"is", " ", "a"})),
586 std::next(flat_haystack.char_begin(), 5));
587 EXPECT_EQ(
588 fragmented_haystack.Find(absl::MakeFragmentedCord({"is", " ", "a"})),
589 std::next(fragmented_haystack.char_begin(), 5));
590 }
591
TEST_P(CordTest,Subcord)592 TEST_P(CordTest, Subcord) {
593 RandomEngine rng(GTEST_FLAG_GET(random_seed));
594 const std::string s = RandomLowercaseString(&rng, 1024);
595
596 absl::Cord a;
597 AppendWithFragments(s, &rng, &a);
598 MaybeHarden(a);
599 ASSERT_EQ(s, std::string(a));
600
601 // Check subcords of a, from a variety of interesting points.
602 std::set<size_t> positions;
603 for (int i = 0; i <= 32; ++i) {
604 positions.insert(i);
605 positions.insert(i * 32 - 1);
606 positions.insert(i * 32);
607 positions.insert(i * 32 + 1);
608 positions.insert(a.size() - i);
609 }
610 positions.insert(237);
611 positions.insert(732);
612 for (size_t pos : positions) {
613 if (pos > a.size()) continue;
614 for (size_t end_pos : positions) {
615 if (end_pos < pos || end_pos > a.size()) continue;
616 absl::Cord sa = a.Subcord(pos, end_pos - pos);
617 ASSERT_EQ(absl::string_view(s).substr(pos, end_pos - pos),
618 std::string(sa))
619 << a;
620 if (pos != 0 || end_pos != a.size()) {
621 ASSERT_EQ(sa.ExpectedChecksum(), absl::nullopt);
622 }
623 }
624 }
625
626 // Do the same thing for an inline cord.
627 const std::string sh = "short";
628 absl::Cord c(sh);
629 for (size_t pos = 0; pos <= sh.size(); ++pos) {
630 for (size_t n = 0; n <= sh.size() - pos; ++n) {
631 absl::Cord sc = c.Subcord(pos, n);
632 ASSERT_EQ(sh.substr(pos, n), std::string(sc)) << c;
633 }
634 }
635
636 // Check subcords of subcords.
637 absl::Cord sa = a.Subcord(0, a.size());
638 std::string ss = s.substr(0, s.size());
639 while (sa.size() > 1) {
640 sa = sa.Subcord(1, sa.size() - 2);
641 ss = ss.substr(1, ss.size() - 2);
642 ASSERT_EQ(ss, std::string(sa)) << a;
643 if (HasFailure()) break; // halt cascade
644 }
645
646 // It is OK to ask for too much.
647 sa = a.Subcord(0, a.size() + 1);
648 EXPECT_EQ(s, std::string(sa));
649
650 // It is OK to ask for something beyond the end.
651 sa = a.Subcord(a.size() + 1, 0);
652 EXPECT_TRUE(sa.empty());
653 sa = a.Subcord(a.size() + 1, 1);
654 EXPECT_TRUE(sa.empty());
655 }
656
TEST_P(CordTest,Swap)657 TEST_P(CordTest, Swap) {
658 absl::string_view a("Dexter");
659 absl::string_view b("Mandark");
660 absl::Cord x(a);
661 absl::Cord y(b);
662 MaybeHarden(x);
663 swap(x, y);
664 if (UseCrc()) {
665 ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
666 ASSERT_EQ(y.ExpectedChecksum(), 1);
667 }
668 ASSERT_EQ(x, absl::Cord(b));
669 ASSERT_EQ(y, absl::Cord(a));
670 x.swap(y);
671 if (UseCrc()) {
672 ASSERT_EQ(x.ExpectedChecksum(), 1);
673 ASSERT_EQ(y.ExpectedChecksum(), absl::nullopt);
674 }
675 ASSERT_EQ(x, absl::Cord(a));
676 ASSERT_EQ(y, absl::Cord(b));
677 }
678
VerifyCopyToString(const absl::Cord & cord)679 static void VerifyCopyToString(const absl::Cord& cord) {
680 std::string initially_empty;
681 absl::CopyCordToString(cord, &initially_empty);
682 EXPECT_EQ(initially_empty, cord);
683
684 constexpr size_t kInitialLength = 1024;
685 std::string has_initial_contents(kInitialLength, 'x');
686 const char* address_before_copy = has_initial_contents.data();
687 absl::CopyCordToString(cord, &has_initial_contents);
688 EXPECT_EQ(has_initial_contents, cord);
689
690 if (cord.size() <= kInitialLength) {
691 EXPECT_EQ(has_initial_contents.data(), address_before_copy)
692 << "CopyCordToString allocated new string storage; "
693 "has_initial_contents = \""
694 << has_initial_contents << "\"";
695 }
696 }
697
TEST_P(CordTest,CopyToString)698 TEST_P(CordTest, CopyToString) {
699 VerifyCopyToString(absl::Cord()); // empty cords cannot carry CRCs
700 VerifyCopyToString(MaybeHardened(absl::Cord("small cord")));
701 VerifyCopyToString(MaybeHardened(
702 absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ",
703 "copying ", "to ", "a ", "string."})));
704 }
705
VerifyAppendCordToString(const absl::Cord & cord)706 static void VerifyAppendCordToString(const absl::Cord& cord) {
707 std::string initially_empty;
708 absl::AppendCordToString(cord, &initially_empty);
709 EXPECT_EQ(initially_empty, cord);
710
711 const absl::string_view kInitialContents = "initial contents.";
712 std::string expected_after_append =
713 absl::StrCat(kInitialContents, std::string(cord));
714
715 std::string no_reserve(kInitialContents);
716 absl::AppendCordToString(cord, &no_reserve);
717 EXPECT_EQ(no_reserve, expected_after_append);
718
719 std::string has_reserved_capacity(kInitialContents);
720 has_reserved_capacity.reserve(has_reserved_capacity.size() + cord.size());
721 const char* address_before_copy = has_reserved_capacity.data();
722 absl::AppendCordToString(cord, &has_reserved_capacity);
723 EXPECT_EQ(has_reserved_capacity, expected_after_append);
724 EXPECT_EQ(has_reserved_capacity.data(), address_before_copy)
725 << "AppendCordToString allocated new string storage; "
726 "has_reserved_capacity = \""
727 << has_reserved_capacity << "\"";
728 }
729
TEST_P(CordTest,AppendToString)730 TEST_P(CordTest, AppendToString) {
731 VerifyAppendCordToString(absl::Cord()); // empty cords cannot carry CRCs
732 VerifyAppendCordToString(MaybeHardened(absl::Cord("small cord")));
733 VerifyAppendCordToString(MaybeHardened(
734 absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ",
735 "appending ", "to ", "a ", "string."})));
736 }
737
TEST_P(CordTest,AppendEmptyBuffer)738 TEST_P(CordTest, AppendEmptyBuffer) {
739 absl::Cord cord;
740 cord.Append(absl::CordBuffer());
741 cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
742 }
743
TEST_P(CordTest,AppendEmptyBufferToFlat)744 TEST_P(CordTest, AppendEmptyBufferToFlat) {
745 absl::Cord cord(std::string(2000, 'x'));
746 cord.Append(absl::CordBuffer());
747 cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
748 }
749
TEST_P(CordTest,AppendEmptyBufferToTree)750 TEST_P(CordTest, AppendEmptyBufferToTree) {
751 absl::Cord cord(std::string(2000, 'x'));
752 cord.Append(std::string(2000, 'y'));
753 cord.Append(absl::CordBuffer());
754 cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
755 }
756
TEST_P(CordTest,AppendSmallBuffer)757 TEST_P(CordTest, AppendSmallBuffer) {
758 absl::Cord cord;
759 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
760 ASSERT_THAT(buffer.capacity(), Le(15));
761 memcpy(buffer.data(), "Abc", 3);
762 buffer.SetLength(3);
763 cord.Append(std::move(buffer));
764 EXPECT_EQ(buffer.length(), 0); // NOLINT
765 EXPECT_GT(buffer.capacity(), 0); // NOLINT
766
767 buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
768 memcpy(buffer.data(), "defgh", 5);
769 buffer.SetLength(5);
770 cord.Append(std::move(buffer));
771 EXPECT_EQ(buffer.length(), 0); // NOLINT
772 EXPECT_GT(buffer.capacity(), 0); // NOLINT
773
774 EXPECT_THAT(cord.Chunks(), ElementsAre("Abcdefgh"));
775 }
776
TEST_P(CordTest,AppendAndPrependBufferArePrecise)777 TEST_P(CordTest, AppendAndPrependBufferArePrecise) {
778 // Create a cord large enough to force 40KB flats.
779 std::string test_data(absl::cord_internal::kMaxFlatLength * 10, 'x');
780 absl::Cord cord1(test_data);
781 absl::Cord cord2(test_data);
782 const size_t size1 = cord1.EstimatedMemoryUsage();
783 const size_t size2 = cord2.EstimatedMemoryUsage();
784
785 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
786 memcpy(buffer.data(), "Abc", 3);
787 buffer.SetLength(3);
788 cord1.Append(std::move(buffer));
789
790 buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
791 memcpy(buffer.data(), "Abc", 3);
792 buffer.SetLength(3);
793 cord2.Prepend(std::move(buffer));
794
795 #ifndef NDEBUG
796 // Allow 32 bytes new CordRepFlat, and 128 bytes for 'glue nodes'
797 constexpr size_t kMaxDelta = 128 + 32;
798 #else
799 // Allow 256 bytes extra for 'allocation debug overhead'
800 constexpr size_t kMaxDelta = 128 + 32 + 256;
801 #endif
802
803 EXPECT_LE(cord1.EstimatedMemoryUsage() - size1, kMaxDelta);
804 EXPECT_LE(cord2.EstimatedMemoryUsage() - size2, kMaxDelta);
805
806 EXPECT_EQ(cord1, absl::StrCat(test_data, "Abc"));
807 EXPECT_EQ(cord2, absl::StrCat("Abc", test_data));
808 }
809
TEST_P(CordTest,PrependSmallBuffer)810 TEST_P(CordTest, PrependSmallBuffer) {
811 absl::Cord cord;
812 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
813 ASSERT_THAT(buffer.capacity(), Le(15));
814 memcpy(buffer.data(), "Abc", 3);
815 buffer.SetLength(3);
816 cord.Prepend(std::move(buffer));
817 EXPECT_EQ(buffer.length(), 0); // NOLINT
818 EXPECT_GT(buffer.capacity(), 0); // NOLINT
819
820 buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
821 memcpy(buffer.data(), "defgh", 5);
822 buffer.SetLength(5);
823 cord.Prepend(std::move(buffer));
824 EXPECT_EQ(buffer.length(), 0); // NOLINT
825 EXPECT_GT(buffer.capacity(), 0); // NOLINT
826
827 EXPECT_THAT(cord.Chunks(), ElementsAre("defghAbc"));
828 }
829
TEST_P(CordTest,AppendLargeBuffer)830 TEST_P(CordTest, AppendLargeBuffer) {
831 absl::Cord cord;
832
833 std::string s1(700, '1');
834 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
835 memcpy(buffer.data(), s1.data(), s1.size());
836 buffer.SetLength(s1.size());
837 cord.Append(std::move(buffer));
838 EXPECT_EQ(buffer.length(), 0); // NOLINT
839 EXPECT_GT(buffer.capacity(), 0); // NOLINT
840
841 std::string s2(1000, '2');
842 buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
843 memcpy(buffer.data(), s2.data(), s2.size());
844 buffer.SetLength(s2.size());
845 cord.Append(std::move(buffer));
846 EXPECT_EQ(buffer.length(), 0); // NOLINT
847 EXPECT_GT(buffer.capacity(), 0); // NOLINT
848
849 EXPECT_THAT(cord.Chunks(), ElementsAre(s1, s2));
850 }
851
TEST_P(CordTest,PrependLargeBuffer)852 TEST_P(CordTest, PrependLargeBuffer) {
853 absl::Cord cord;
854
855 std::string s1(700, '1');
856 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
857 memcpy(buffer.data(), s1.data(), s1.size());
858 buffer.SetLength(s1.size());
859 cord.Prepend(std::move(buffer));
860 EXPECT_EQ(buffer.length(), 0); // NOLINT
861 EXPECT_GT(buffer.capacity(), 0); // NOLINT
862
863 std::string s2(1000, '2');
864 buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
865 memcpy(buffer.data(), s2.data(), s2.size());
866 buffer.SetLength(s2.size());
867 cord.Prepend(std::move(buffer));
868 EXPECT_EQ(buffer.length(), 0); // NOLINT
869 EXPECT_GT(buffer.capacity(), 0); // NOLINT
870
871 EXPECT_THAT(cord.Chunks(), ElementsAre(s2, s1));
872 }
873
874 class CordAppendBufferTest : public testing::TestWithParam<bool> {
875 public:
is_default() const876 size_t is_default() const { return GetParam(); }
877
878 // Returns human readable string representation of the test parameter.
ToString(testing::TestParamInfo<bool> param)879 static std::string ToString(testing::TestParamInfo<bool> param) {
880 return param.param ? "DefaultLimit" : "CustomLimit";
881 }
882
limit() const883 size_t limit() const {
884 return is_default() ? absl::CordBuffer::kDefaultLimit
885 : absl::CordBuffer::kCustomLimit;
886 }
887
maximum_payload() const888 size_t maximum_payload() const {
889 return is_default() ? absl::CordBuffer::MaximumPayload()
890 : absl::CordBuffer::MaximumPayload(limit());
891 }
892
GetAppendBuffer(absl::Cord & cord,size_t capacity,size_t min_capacity=16)893 absl::CordBuffer GetAppendBuffer(absl::Cord& cord, size_t capacity,
894 size_t min_capacity = 16) {
895 return is_default()
896 ? cord.GetAppendBuffer(capacity, min_capacity)
897 : cord.GetCustomAppendBuffer(limit(), capacity, min_capacity);
898 }
899 };
900
901 INSTANTIATE_TEST_SUITE_P(WithParam, CordAppendBufferTest, testing::Bool(),
902 CordAppendBufferTest::ToString);
903
TEST_P(CordAppendBufferTest,GetAppendBufferOnEmptyCord)904 TEST_P(CordAppendBufferTest, GetAppendBufferOnEmptyCord) {
905 absl::Cord cord;
906 absl::CordBuffer buffer = GetAppendBuffer(cord, 1000);
907 EXPECT_GE(buffer.capacity(), 1000);
908 EXPECT_EQ(buffer.length(), 0);
909 }
910
TEST_P(CordAppendBufferTest,GetAppendBufferOnInlinedCord)911 TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCord) {
912 static constexpr int kInlinedSize = sizeof(absl::CordBuffer) - 1;
913 for (int size : {6, kInlinedSize - 3, kInlinedSize - 2, 1000}) {
914 absl::Cord cord("Abc");
915 absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
916 EXPECT_GE(buffer.capacity(), 3 + size);
917 EXPECT_EQ(buffer.length(), 3);
918 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
919 EXPECT_TRUE(cord.empty());
920 }
921 }
922
TEST_P(CordAppendBufferTest,GetAppendBufferOnInlinedCordCapacityCloseToMax)923 TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCordCapacityCloseToMax) {
924 // Cover the use case where we have a non empty inlined cord with some size
925 // 'n', and ask for something like 'uint64_max - k', assuming internal logic
926 // could overflow on 'uint64_max - k + size', and return a valid, but
927 // inefficiently smaller buffer if it would provide is the max allowed size.
928 for (size_t dist_from_max = 0; dist_from_max <= 4; ++dist_from_max) {
929 absl::Cord cord("Abc");
930 size_t size = std::numeric_limits<size_t>::max() - dist_from_max;
931 absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
932 EXPECT_GE(buffer.capacity(), maximum_payload());
933 EXPECT_EQ(buffer.length(), 3);
934 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
935 EXPECT_TRUE(cord.empty());
936 }
937 }
938
TEST_P(CordAppendBufferTest,GetAppendBufferOnFlat)939 TEST_P(CordAppendBufferTest, GetAppendBufferOnFlat) {
940 // Create a cord with a single flat and extra capacity
941 absl::Cord cord;
942 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
943 const size_t expected_capacity = buffer.capacity();
944 buffer.SetLength(3);
945 memcpy(buffer.data(), "Abc", 3);
946 cord.Append(std::move(buffer));
947
948 buffer = GetAppendBuffer(cord, 6);
949 EXPECT_EQ(buffer.capacity(), expected_capacity);
950 EXPECT_EQ(buffer.length(), 3);
951 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
952 EXPECT_TRUE(cord.empty());
953 }
954
TEST_P(CordAppendBufferTest,GetAppendBufferOnFlatWithoutMinCapacity)955 TEST_P(CordAppendBufferTest, GetAppendBufferOnFlatWithoutMinCapacity) {
956 // Create a cord with a single flat and extra capacity
957 absl::Cord cord;
958 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
959 buffer.SetLength(30);
960 memset(buffer.data(), 'x', 30);
961 cord.Append(std::move(buffer));
962
963 buffer = GetAppendBuffer(cord, 1000, 900);
964 EXPECT_GE(buffer.capacity(), 1000);
965 EXPECT_EQ(buffer.length(), 0);
966 EXPECT_EQ(cord, std::string(30, 'x'));
967 }
968
TEST_P(CordAppendBufferTest,GetAppendBufferOnTree)969 TEST_P(CordAppendBufferTest, GetAppendBufferOnTree) {
970 RandomEngine rng;
971 for (int num_flats : {2, 3, 100}) {
972 // Create a cord with `num_flats` flats and extra capacity
973 absl::Cord cord;
974 std::string prefix;
975 std::string last;
976 for (int i = 0; i < num_flats - 1; ++i) {
977 prefix += last;
978 last = RandomLowercaseString(&rng, 10);
979 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
980 buffer.SetLength(10);
981 memcpy(buffer.data(), last.data(), 10);
982 cord.Append(std::move(buffer));
983 }
984 absl::CordBuffer buffer = GetAppendBuffer(cord, 6);
985 EXPECT_GE(buffer.capacity(), 500);
986 EXPECT_EQ(buffer.length(), 10);
987 EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), last);
988 EXPECT_EQ(cord, prefix);
989 }
990 }
991
TEST_P(CordAppendBufferTest,GetAppendBufferOnTreeWithoutMinCapacity)992 TEST_P(CordAppendBufferTest, GetAppendBufferOnTreeWithoutMinCapacity) {
993 absl::Cord cord;
994 for (int i = 0; i < 2; ++i) {
995 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
996 buffer.SetLength(3);
997 memcpy(buffer.data(), i ? "def" : "Abc", 3);
998 cord.Append(std::move(buffer));
999 }
1000 absl::CordBuffer buffer = GetAppendBuffer(cord, 1000, 900);
1001 EXPECT_GE(buffer.capacity(), 1000);
1002 EXPECT_EQ(buffer.length(), 0);
1003 EXPECT_EQ(cord, "Abcdef");
1004 }
1005
TEST_P(CordAppendBufferTest,GetAppendBufferOnSubstring)1006 TEST_P(CordAppendBufferTest, GetAppendBufferOnSubstring) {
1007 // Create a large cord with a single flat and some extra capacity
1008 absl::Cord cord;
1009 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
1010 buffer.SetLength(450);
1011 memset(buffer.data(), 'x', 450);
1012 cord.Append(std::move(buffer));
1013 cord.RemovePrefix(1);
1014
1015 // Deny on substring
1016 buffer = GetAppendBuffer(cord, 6);
1017 EXPECT_EQ(buffer.length(), 0);
1018 EXPECT_EQ(cord, std::string(449, 'x'));
1019 }
1020
TEST_P(CordAppendBufferTest,GetAppendBufferOnSharedCord)1021 TEST_P(CordAppendBufferTest, GetAppendBufferOnSharedCord) {
1022 // Create a shared cord with a single flat and extra capacity
1023 absl::Cord cord;
1024 absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
1025 buffer.SetLength(3);
1026 memcpy(buffer.data(), "Abc", 3);
1027 cord.Append(std::move(buffer));
1028 absl::Cord shared_cord = cord;
1029
1030 // Deny on flat
1031 buffer = GetAppendBuffer(cord, 6);
1032 EXPECT_EQ(buffer.length(), 0);
1033 EXPECT_EQ(cord, "Abc");
1034
1035 buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
1036 buffer.SetLength(3);
1037 memcpy(buffer.data(), "def", 3);
1038 cord.Append(std::move(buffer));
1039 shared_cord = cord;
1040
1041 // Deny on tree
1042 buffer = GetAppendBuffer(cord, 6);
1043 EXPECT_EQ(buffer.length(), 0);
1044 EXPECT_EQ(cord, "Abcdef");
1045 }
1046
TEST_P(CordTest,TryFlatEmpty)1047 TEST_P(CordTest, TryFlatEmpty) {
1048 absl::Cord c;
1049 EXPECT_EQ(c.TryFlat(), "");
1050 }
1051
TEST_P(CordTest,TryFlatFlat)1052 TEST_P(CordTest, TryFlatFlat) {
1053 absl::Cord c("hello");
1054 MaybeHarden(c);
1055 EXPECT_EQ(c.TryFlat(), "hello");
1056 }
1057
TEST_P(CordTest,TryFlatSubstrInlined)1058 TEST_P(CordTest, TryFlatSubstrInlined) {
1059 absl::Cord c("hello");
1060 c.RemovePrefix(1);
1061 MaybeHarden(c);
1062 EXPECT_EQ(c.TryFlat(), "ello");
1063 }
1064
TEST_P(CordTest,TryFlatSubstrFlat)1065 TEST_P(CordTest, TryFlatSubstrFlat) {
1066 absl::Cord c("longer than 15 bytes");
1067 absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
1068 MaybeHarden(sub);
1069 EXPECT_EQ(sub.TryFlat(), "onger than 15 bytes");
1070 }
1071
TEST_P(CordTest,TryFlatConcat)1072 TEST_P(CordTest, TryFlatConcat) {
1073 absl::Cord c = absl::MakeFragmentedCord({"hel", "lo"});
1074 MaybeHarden(c);
1075 EXPECT_EQ(c.TryFlat(), absl::nullopt);
1076 }
1077
TEST_P(CordTest,TryFlatExternal)1078 TEST_P(CordTest, TryFlatExternal) {
1079 absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
1080 MaybeHarden(c);
1081 EXPECT_EQ(c.TryFlat(), "hell");
1082 }
1083
TEST_P(CordTest,TryFlatSubstrExternal)1084 TEST_P(CordTest, TryFlatSubstrExternal) {
1085 absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
1086 absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
1087 MaybeHarden(sub);
1088 EXPECT_EQ(sub.TryFlat(), "ell");
1089 }
1090
TEST_P(CordTest,TryFlatCommonlyAssumedInvariants)1091 TEST_P(CordTest, TryFlatCommonlyAssumedInvariants) {
1092 // The behavior tested below is not part of the API contract of Cord, but it's
1093 // something we intend to be true in our current implementation. This test
1094 // exists to detect and prevent accidental breakage of the implementation.
1095 absl::string_view fragments[] = {"A fragmented test",
1096 " cord",
1097 " to test subcords",
1098 " of ",
1099 "a",
1100 " cord for",
1101 " each chunk "
1102 "returned by the ",
1103 "iterator"};
1104 absl::Cord c = absl::MakeFragmentedCord(fragments);
1105 MaybeHarden(c);
1106 int fragment = 0;
1107 int offset = 0;
1108 absl::Cord::CharIterator itc = c.char_begin();
1109 for (absl::string_view sv : c.Chunks()) {
1110 absl::string_view expected = fragments[fragment];
1111 absl::Cord subcord1 = c.Subcord(offset, sv.length());
1112 absl::Cord subcord2 = absl::Cord::AdvanceAndRead(&itc, sv.size());
1113 EXPECT_EQ(subcord1.TryFlat(), expected);
1114 EXPECT_EQ(subcord2.TryFlat(), expected);
1115 ++fragment;
1116 offset += sv.length();
1117 }
1118 }
1119
IsFlat(const absl::Cord & c)1120 static bool IsFlat(const absl::Cord& c) {
1121 return c.chunk_begin() == c.chunk_end() || ++c.chunk_begin() == c.chunk_end();
1122 }
1123
VerifyFlatten(absl::Cord c)1124 static void VerifyFlatten(absl::Cord c) {
1125 std::string old_contents(c);
1126 absl::string_view old_flat;
1127 bool already_flat_and_non_empty = IsFlat(c) && !c.empty();
1128 if (already_flat_and_non_empty) {
1129 old_flat = *c.chunk_begin();
1130 }
1131 absl::string_view new_flat = c.Flatten();
1132
1133 // Verify that the contents of the flattened Cord are correct.
1134 EXPECT_EQ(new_flat, old_contents);
1135 EXPECT_EQ(std::string(c), old_contents);
1136
1137 // If the Cord contained data and was already flat, verify that the data
1138 // wasn't copied.
1139 if (already_flat_and_non_empty) {
1140 EXPECT_EQ(old_flat.data(), new_flat.data())
1141 << "Allocated new memory even though the Cord was already flat.";
1142 }
1143
1144 // Verify that the flattened Cord is in fact flat.
1145 EXPECT_TRUE(IsFlat(c));
1146 }
1147
TEST_P(CordTest,Flatten)1148 TEST_P(CordTest, Flatten) {
1149 VerifyFlatten(absl::Cord());
1150 VerifyFlatten(MaybeHardened(absl::Cord("small cord")));
1151 VerifyFlatten(
1152 MaybeHardened(absl::Cord("larger than small buffer optimization")));
1153 VerifyFlatten(MaybeHardened(
1154 absl::MakeFragmentedCord({"small ", "fragmented ", "cord"})));
1155
1156 // Test with a cord that is longer than the largest flat buffer
1157 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1158 VerifyFlatten(MaybeHardened(absl::Cord(RandomLowercaseString(&rng, 8192))));
1159 }
1160
1161 // Test data
1162 namespace {
1163 class TestData {
1164 private:
1165 std::vector<std::string> data_;
1166
1167 // Return a std::string of the specified length.
MakeString(int length)1168 static std::string MakeString(int length) {
1169 std::string result;
1170 char buf[30];
1171 snprintf(buf, sizeof(buf), "(%d)", length);
1172 while (result.size() < length) {
1173 result += buf;
1174 }
1175 result.resize(length);
1176 return result;
1177 }
1178
1179 public:
TestData()1180 TestData() {
1181 // short strings increasing in length by one
1182 for (int i = 0; i < 30; i++) {
1183 data_.push_back(MakeString(i));
1184 }
1185
1186 // strings around half kMaxFlatLength
1187 static const int kMaxFlatLength = 4096 - 9;
1188 static const int kHalf = kMaxFlatLength / 2;
1189
1190 for (int i = -10; i <= +10; i++) {
1191 data_.push_back(MakeString(kHalf + i));
1192 }
1193
1194 for (int i = -10; i <= +10; i++) {
1195 data_.push_back(MakeString(kMaxFlatLength + i));
1196 }
1197 }
1198
size() const1199 size_t size() const { return data_.size(); }
data(size_t i) const1200 const std::string& data(size_t i) const { return data_[i]; }
1201 };
1202 } // namespace
1203
TEST_P(CordTest,MultipleLengths)1204 TEST_P(CordTest, MultipleLengths) {
1205 TestData d;
1206 for (size_t i = 0; i < d.size(); i++) {
1207 std::string a = d.data(i);
1208
1209 { // Construct from Cord
1210 absl::Cord tmp(a);
1211 absl::Cord x(tmp);
1212 MaybeHarden(x);
1213 EXPECT_EQ(a, std::string(x)) << "'" << a << "'";
1214 }
1215
1216 { // Construct from absl::string_view
1217 absl::Cord x(a);
1218 MaybeHarden(x);
1219 EXPECT_EQ(a, std::string(x)) << "'" << a << "'";
1220 }
1221
1222 { // Append cord to self
1223 absl::Cord self(a);
1224 MaybeHarden(self);
1225 self.Append(self);
1226 EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'";
1227 }
1228
1229 { // Prepend cord to self
1230 absl::Cord self(a);
1231 MaybeHarden(self);
1232 self.Prepend(self);
1233 EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'";
1234 }
1235
1236 // Try to append/prepend others
1237 for (size_t j = 0; j < d.size(); j++) {
1238 std::string b = d.data(j);
1239
1240 { // CopyFrom Cord
1241 absl::Cord x(a);
1242 absl::Cord y(b);
1243 MaybeHarden(x);
1244 x = y;
1245 EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'";
1246 }
1247
1248 { // CopyFrom absl::string_view
1249 absl::Cord x(a);
1250 MaybeHarden(x);
1251 x = b;
1252 EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'";
1253 }
1254
1255 { // Cord::Append(Cord)
1256 absl::Cord x(a);
1257 absl::Cord y(b);
1258 MaybeHarden(x);
1259 x.Append(y);
1260 EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'";
1261 }
1262
1263 { // Cord::Append(absl::string_view)
1264 absl::Cord x(a);
1265 MaybeHarden(x);
1266 x.Append(b);
1267 EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'";
1268 }
1269
1270 { // Cord::Prepend(Cord)
1271 absl::Cord x(a);
1272 absl::Cord y(b);
1273 MaybeHarden(x);
1274 x.Prepend(y);
1275 EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'";
1276 }
1277
1278 { // Cord::Prepend(absl::string_view)
1279 absl::Cord x(a);
1280 MaybeHarden(x);
1281 x.Prepend(b);
1282 EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'";
1283 }
1284 }
1285 }
1286 }
1287
1288 namespace {
1289
TEST_P(CordTest,RemoveSuffixWithExternalOrSubstring)1290 TEST_P(CordTest, RemoveSuffixWithExternalOrSubstring) {
1291 absl::Cord cord = absl::MakeCordFromExternal(
1292 "foo bar baz", [](absl::string_view s) { DoNothing(s, nullptr); });
1293 EXPECT_EQ("foo bar baz", std::string(cord));
1294
1295 MaybeHarden(cord);
1296
1297 // This RemoveSuffix() will wrap the EXTERNAL node in a SUBSTRING node.
1298 cord.RemoveSuffix(4);
1299 EXPECT_EQ("foo bar", std::string(cord));
1300
1301 MaybeHarden(cord);
1302
1303 // This RemoveSuffix() will adjust the SUBSTRING node in-place.
1304 cord.RemoveSuffix(4);
1305 EXPECT_EQ("foo", std::string(cord));
1306 }
1307
TEST_P(CordTest,RemoveSuffixMakesZeroLengthNode)1308 TEST_P(CordTest, RemoveSuffixMakesZeroLengthNode) {
1309 absl::Cord c;
1310 c.Append(absl::Cord(std::string(100, 'x')));
1311 absl::Cord other_ref = c; // Prevent inplace appends
1312 MaybeHarden(c);
1313 c.Append(absl::Cord(std::string(200, 'y')));
1314 c.RemoveSuffix(200);
1315 EXPECT_EQ(std::string(100, 'x'), std::string(c));
1316 }
1317
1318 } // namespace
1319
1320 // CordSpliceTest contributed by hendrie.
1321 namespace {
1322
1323 // Create a cord with an external memory block filled with 'z'
CordWithZedBlock(size_t size)1324 absl::Cord CordWithZedBlock(size_t size) {
1325 char* data = new char[size];
1326 if (size > 0) {
1327 memset(data, 'z', size);
1328 }
1329 absl::Cord cord = absl::MakeCordFromExternal(
1330 absl::string_view(data, size),
1331 [](absl::string_view s) { delete[] s.data(); });
1332 return cord;
1333 }
1334
1335 // Establish that ZedBlock does what we think it does.
TEST_P(CordTest,CordSpliceTestZedBlock)1336 TEST_P(CordTest, CordSpliceTestZedBlock) {
1337 absl::Cord blob = CordWithZedBlock(10);
1338 MaybeHarden(blob);
1339 EXPECT_EQ(10, blob.size());
1340 std::string s;
1341 absl::CopyCordToString(blob, &s);
1342 EXPECT_EQ("zzzzzzzzzz", s);
1343 }
1344
TEST_P(CordTest,CordSpliceTestZedBlock0)1345 TEST_P(CordTest, CordSpliceTestZedBlock0) {
1346 absl::Cord blob = CordWithZedBlock(0);
1347 MaybeHarden(blob);
1348 EXPECT_EQ(0, blob.size());
1349 std::string s;
1350 absl::CopyCordToString(blob, &s);
1351 EXPECT_EQ("", s);
1352 }
1353
TEST_P(CordTest,CordSpliceTestZedBlockSuffix1)1354 TEST_P(CordTest, CordSpliceTestZedBlockSuffix1) {
1355 absl::Cord blob = CordWithZedBlock(10);
1356 MaybeHarden(blob);
1357 EXPECT_EQ(10, blob.size());
1358 absl::Cord suffix(blob);
1359 suffix.RemovePrefix(9);
1360 EXPECT_EQ(1, suffix.size());
1361 std::string s;
1362 absl::CopyCordToString(suffix, &s);
1363 EXPECT_EQ("z", s);
1364 }
1365
1366 // Remove all of a prefix block
TEST_P(CordTest,CordSpliceTestZedBlockSuffix0)1367 TEST_P(CordTest, CordSpliceTestZedBlockSuffix0) {
1368 absl::Cord blob = CordWithZedBlock(10);
1369 MaybeHarden(blob);
1370 EXPECT_EQ(10, blob.size());
1371 absl::Cord suffix(blob);
1372 suffix.RemovePrefix(10);
1373 EXPECT_EQ(0, suffix.size());
1374 std::string s;
1375 absl::CopyCordToString(suffix, &s);
1376 EXPECT_EQ("", s);
1377 }
1378
BigCord(size_t len,char v)1379 absl::Cord BigCord(size_t len, char v) {
1380 std::string s(len, v);
1381 return absl::Cord(s);
1382 }
1383
1384 // Splice block into cord.
SpliceCord(const absl::Cord & blob,int64_t offset,const absl::Cord & block)1385 absl::Cord SpliceCord(const absl::Cord& blob, int64_t offset,
1386 const absl::Cord& block) {
1387 CHECK_GE(offset, 0);
1388 CHECK_LE(static_cast<size_t>(offset) + block.size(), blob.size());
1389 absl::Cord result(blob);
1390 result.RemoveSuffix(blob.size() - offset);
1391 result.Append(block);
1392 absl::Cord suffix(blob);
1393 suffix.RemovePrefix(offset + block.size());
1394 result.Append(suffix);
1395 CHECK_EQ(blob.size(), result.size());
1396 return result;
1397 }
1398
1399 // Taking an empty suffix of a block breaks appending.
TEST_P(CordTest,CordSpliceTestRemoveEntireBlock1)1400 TEST_P(CordTest, CordSpliceTestRemoveEntireBlock1) {
1401 absl::Cord zero = CordWithZedBlock(10);
1402 MaybeHarden(zero);
1403 absl::Cord suffix(zero);
1404 suffix.RemovePrefix(10);
1405 absl::Cord result;
1406 result.Append(suffix);
1407 }
1408
TEST_P(CordTest,CordSpliceTestRemoveEntireBlock2)1409 TEST_P(CordTest, CordSpliceTestRemoveEntireBlock2) {
1410 absl::Cord zero = CordWithZedBlock(10);
1411 MaybeHarden(zero);
1412 absl::Cord prefix(zero);
1413 prefix.RemoveSuffix(10);
1414 absl::Cord suffix(zero);
1415 suffix.RemovePrefix(10);
1416 absl::Cord result(prefix);
1417 result.Append(suffix);
1418 }
1419
TEST_P(CordTest,CordSpliceTestRemoveEntireBlock3)1420 TEST_P(CordTest, CordSpliceTestRemoveEntireBlock3) {
1421 absl::Cord blob = CordWithZedBlock(10);
1422 absl::Cord block = BigCord(10, 'b');
1423 MaybeHarden(blob);
1424 MaybeHarden(block);
1425 blob = SpliceCord(blob, 0, block);
1426 }
1427
1428 struct CordCompareTestCase {
1429 template <typename LHS, typename RHS>
CordCompareTestCase__anon350f853b0b11::CordCompareTestCase1430 CordCompareTestCase(const LHS& lhs, const RHS& rhs, bool use_crc)
1431 : lhs_cord(lhs), rhs_cord(rhs) {
1432 if (use_crc) {
1433 lhs_cord.SetExpectedChecksum(1);
1434 }
1435 }
1436
1437 absl::Cord lhs_cord;
1438 absl::Cord rhs_cord;
1439 };
1440
__anon350f853b0d02(int x) 1441 const auto sign = [](int x) { return x == 0 ? 0 : (x > 0 ? 1 : -1); };
1442
VerifyComparison(const CordCompareTestCase & test_case)1443 void VerifyComparison(const CordCompareTestCase& test_case) {
1444 std::string lhs_string(test_case.lhs_cord);
1445 std::string rhs_string(test_case.rhs_cord);
1446 int expected = sign(lhs_string.compare(rhs_string));
1447 EXPECT_EQ(expected, test_case.lhs_cord.Compare(test_case.rhs_cord))
1448 << "LHS=" << lhs_string << "; RHS=" << rhs_string;
1449 EXPECT_EQ(expected, test_case.lhs_cord.Compare(rhs_string))
1450 << "LHS=" << lhs_string << "; RHS=" << rhs_string;
1451 EXPECT_EQ(-expected, test_case.rhs_cord.Compare(test_case.lhs_cord))
1452 << "LHS=" << rhs_string << "; RHS=" << lhs_string;
1453 EXPECT_EQ(-expected, test_case.rhs_cord.Compare(lhs_string))
1454 << "LHS=" << rhs_string << "; RHS=" << lhs_string;
1455 }
1456
TEST_P(CordTest,Compare)1457 TEST_P(CordTest, Compare) {
1458 absl::Cord subcord("aaaaaBBBBBcccccDDDDD");
1459 subcord = subcord.Subcord(3, 10);
1460
1461 absl::Cord tmp("aaaaaaaaaaaaaaaa");
1462 tmp.Append("BBBBBBBBBBBBBBBB");
1463 absl::Cord concat = absl::Cord("cccccccccccccccc");
1464 concat.Append("DDDDDDDDDDDDDDDD");
1465 concat.Prepend(tmp);
1466
1467 absl::Cord concat2("aaaaaaaaaaaaa");
1468 concat2.Append("aaaBBBBBBBBBBBBBBBBccccc");
1469 concat2.Append("cccccccccccDDDDDDDDDDDDDD");
1470 concat2.Append("DD");
1471
1472 const bool use_crc = UseCrc();
1473
1474 std::vector<CordCompareTestCase> test_cases = {{
1475 // Inline cords
1476 {"abcdef", "abcdef", use_crc},
1477 {"abcdef", "abcdee", use_crc},
1478 {"abcdef", "abcdeg", use_crc},
1479 {"bbcdef", "abcdef", use_crc},
1480 {"bbcdef", "abcdeg", use_crc},
1481 {"abcdefa", "abcdef", use_crc},
1482 {"abcdef", "abcdefa", use_crc},
1483
1484 // Small flat cords
1485 {"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc},
1486 {"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBxccccDDDDD", use_crc},
1487 {"aaaaaBBBBBcxcccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc},
1488 {"aaaaaBBBBBxccccDDDDD", "aaaaaBBBBBcccccDDDDX", use_crc},
1489 {"aaaaaBBBBBcccccDDDDDa", "aaaaaBBBBBcccccDDDDD", use_crc},
1490 {"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDDa", use_crc},
1491
1492 // Subcords
1493 {subcord, subcord, use_crc},
1494 {subcord, "aaBBBBBccc", use_crc},
1495 {subcord, "aaBBBBBccd", use_crc},
1496 {subcord, "aaBBBBBccb", use_crc},
1497 {subcord, "aaBBBBBxcb", use_crc},
1498 {subcord, "aaBBBBBccca", use_crc},
1499 {subcord, "aaBBBBBcc", use_crc},
1500
1501 // Concats
1502 {concat, concat, use_crc},
1503 {concat,
1504 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDD",
1505 use_crc},
1506 {concat,
1507 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBcccccccccccccccxDDDDDDDDDDDDDDDD",
1508 use_crc},
1509 {concat,
1510 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBacccccccccccccccDDDDDDDDDDDDDDDD",
1511 use_crc},
1512 {concat,
1513 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDD",
1514 use_crc},
1515 {concat,
1516 "aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDDe",
1517 use_crc},
1518
1519 {concat, concat2, use_crc},
1520 }};
1521
1522 for (const auto& tc : test_cases) {
1523 VerifyComparison(tc);
1524 }
1525 }
1526
TEST_P(CordTest,CompareAfterAssign)1527 TEST_P(CordTest, CompareAfterAssign) {
1528 absl::Cord a("aaaaaa1111111");
1529 absl::Cord b("aaaaaa2222222");
1530 MaybeHarden(a);
1531 a = "cccccc";
1532 b = "cccccc";
1533 EXPECT_EQ(a, b);
1534 EXPECT_FALSE(a < b);
1535
1536 a = "aaaa";
1537 b = "bbbbb";
1538 a = "";
1539 b = "";
1540 EXPECT_EQ(a, b);
1541 EXPECT_FALSE(a < b);
1542 }
1543
1544 // Test CompareTo() and ComparePrefix() against string and substring
1545 // comparison methods from basic_string.
TestCompare(const absl::Cord & c,const absl::Cord & d,RandomEngine * rng)1546 static void TestCompare(const absl::Cord& c, const absl::Cord& d,
1547 RandomEngine* rng) {
1548 // char_traits<char>::lt is guaranteed to do an unsigned comparison:
1549 // https://en.cppreference.com/w/cpp/string/char_traits/cmp. We also expect
1550 // Cord comparisons to be based on unsigned byte comparisons regardless of
1551 // whether char is signed.
1552 int expected = sign(std::string(c).compare(std::string(d)));
1553 EXPECT_EQ(expected, sign(c.Compare(d))) << c << ", " << d;
1554 }
1555
TEST_P(CordTest,CompareComparisonIsUnsigned)1556 TEST_P(CordTest, CompareComparisonIsUnsigned) {
1557 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1558 std::uniform_int_distribution<uint32_t> uniform_uint8(0, 255);
1559 char x = static_cast<char>(uniform_uint8(rng));
1560 TestCompare(
1561 absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x)),
1562 absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x ^ 0x80)), &rng);
1563 }
1564
TEST_P(CordTest,CompareRandomComparisons)1565 TEST_P(CordTest, CompareRandomComparisons) {
1566 const int kIters = 5000;
1567 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1568
1569 int n = GetUniformRandomUpTo(&rng, 5000);
1570 absl::Cord a[] = {MakeExternalCord(n),
1571 absl::Cord("ant"),
1572 absl::Cord("elephant"),
1573 absl::Cord("giraffe"),
1574 absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100),
1575 GetUniformRandomUpTo(&rng, 100))),
1576 absl::Cord(""),
1577 absl::Cord("x"),
1578 absl::Cord("A"),
1579 absl::Cord("B"),
1580 absl::Cord("C")};
1581 for (int i = 0; i < kIters; i++) {
1582 absl::Cord c, d;
1583 for (int j = 0; j < (i % 7) + 1; j++) {
1584 c.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]);
1585 d.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]);
1586 }
1587 std::bernoulli_distribution coin_flip(0.5);
1588 MaybeHarden(c);
1589 MaybeHarden(d);
1590 TestCompare(coin_flip(rng) ? c : absl::Cord(std::string(c)),
1591 coin_flip(rng) ? d : absl::Cord(std::string(d)), &rng);
1592 }
1593 }
1594
1595 template <typename T1, typename T2>
CompareOperators()1596 void CompareOperators() {
1597 const T1 a("a");
1598 const T2 b("b");
1599
1600 EXPECT_TRUE(a == a);
1601 // For pointer type (i.e. `const char*`), operator== compares the address
1602 // instead of the string, so `a == const char*("a")` isn't necessarily true.
1603 EXPECT_TRUE(std::is_pointer<T1>::value || a == T1("a"));
1604 EXPECT_TRUE(std::is_pointer<T2>::value || a == T2("a"));
1605 EXPECT_FALSE(a == b);
1606
1607 EXPECT_TRUE(a != b);
1608 EXPECT_FALSE(a != a);
1609
1610 EXPECT_TRUE(a < b);
1611 EXPECT_FALSE(b < a);
1612
1613 EXPECT_TRUE(b > a);
1614 EXPECT_FALSE(a > b);
1615
1616 EXPECT_TRUE(a >= a);
1617 EXPECT_TRUE(b >= a);
1618 EXPECT_FALSE(a >= b);
1619
1620 EXPECT_TRUE(a <= a);
1621 EXPECT_TRUE(a <= b);
1622 EXPECT_FALSE(b <= a);
1623 }
1624
TEST_P(CordTest,ComparisonOperators_Cord_Cord)1625 TEST_P(CordTest, ComparisonOperators_Cord_Cord) {
1626 CompareOperators<absl::Cord, absl::Cord>();
1627 }
1628
TEST_P(CordTest,ComparisonOperators_Cord_StringPiece)1629 TEST_P(CordTest, ComparisonOperators_Cord_StringPiece) {
1630 CompareOperators<absl::Cord, absl::string_view>();
1631 }
1632
TEST_P(CordTest,ComparisonOperators_StringPiece_Cord)1633 TEST_P(CordTest, ComparisonOperators_StringPiece_Cord) {
1634 CompareOperators<absl::string_view, absl::Cord>();
1635 }
1636
TEST_P(CordTest,ComparisonOperators_Cord_string)1637 TEST_P(CordTest, ComparisonOperators_Cord_string) {
1638 CompareOperators<absl::Cord, std::string>();
1639 }
1640
TEST_P(CordTest,ComparisonOperators_string_Cord)1641 TEST_P(CordTest, ComparisonOperators_string_Cord) {
1642 CompareOperators<std::string, absl::Cord>();
1643 }
1644
TEST_P(CordTest,ComparisonOperators_stdstring_Cord)1645 TEST_P(CordTest, ComparisonOperators_stdstring_Cord) {
1646 CompareOperators<std::string, absl::Cord>();
1647 }
1648
TEST_P(CordTest,ComparisonOperators_Cord_stdstring)1649 TEST_P(CordTest, ComparisonOperators_Cord_stdstring) {
1650 CompareOperators<absl::Cord, std::string>();
1651 }
1652
TEST_P(CordTest,ComparisonOperators_charstar_Cord)1653 TEST_P(CordTest, ComparisonOperators_charstar_Cord) {
1654 CompareOperators<const char*, absl::Cord>();
1655 }
1656
TEST_P(CordTest,ComparisonOperators_Cord_charstar)1657 TEST_P(CordTest, ComparisonOperators_Cord_charstar) {
1658 CompareOperators<absl::Cord, const char*>();
1659 }
1660
TEST_P(CordTest,ConstructFromExternalReleaserInvoked)1661 TEST_P(CordTest, ConstructFromExternalReleaserInvoked) {
1662 // Empty external memory means the releaser should be called immediately.
1663 {
1664 bool invoked = false;
1665 auto releaser = [&invoked](absl::string_view) { invoked = true; };
1666 {
1667 auto c = absl::MakeCordFromExternal("", releaser);
1668 EXPECT_TRUE(invoked);
1669 }
1670 }
1671
1672 // If the size of the data is small enough, a future constructor
1673 // implementation may copy the bytes and immediately invoke the releaser
1674 // instead of creating an external node. We make a large dummy std::string to
1675 // make this test independent of such an optimization.
1676 std::string large_dummy(2048, 'c');
1677 {
1678 bool invoked = false;
1679 auto releaser = [&invoked](absl::string_view) { invoked = true; };
1680 {
1681 auto c = absl::MakeCordFromExternal(large_dummy, releaser);
1682 EXPECT_FALSE(invoked);
1683 }
1684 EXPECT_TRUE(invoked);
1685 }
1686
1687 {
1688 bool invoked = false;
1689 auto releaser = [&invoked](absl::string_view) { invoked = true; };
1690 {
1691 absl::Cord copy;
1692 {
1693 auto c = absl::MakeCordFromExternal(large_dummy, releaser);
1694 copy = c;
1695 EXPECT_FALSE(invoked);
1696 }
1697 EXPECT_FALSE(invoked);
1698 }
1699 EXPECT_TRUE(invoked);
1700 }
1701 }
1702
TEST_P(CordTest,ConstructFromExternalCompareContents)1703 TEST_P(CordTest, ConstructFromExternalCompareContents) {
1704 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1705
1706 for (int length = 1; length <= 2048; length *= 2) {
1707 std::string data = RandomLowercaseString(&rng, length);
1708 auto* external = new std::string(data);
1709 auto cord =
1710 absl::MakeCordFromExternal(*external, [external](absl::string_view sv) {
1711 EXPECT_EQ(external->data(), sv.data());
1712 EXPECT_EQ(external->size(), sv.size());
1713 delete external;
1714 });
1715 MaybeHarden(cord);
1716 EXPECT_EQ(data, cord);
1717 }
1718 }
1719
TEST_P(CordTest,ConstructFromExternalLargeReleaser)1720 TEST_P(CordTest, ConstructFromExternalLargeReleaser) {
1721 RandomEngine rng(GTEST_FLAG_GET(random_seed));
1722 constexpr size_t kLength = 256;
1723 std::string data = RandomLowercaseString(&rng, kLength);
1724 std::array<char, kLength> data_array;
1725 for (size_t i = 0; i < kLength; ++i) data_array[i] = data[i];
1726 bool invoked = false;
1727 auto releaser = [data_array, &invoked](absl::string_view data) {
1728 EXPECT_EQ(data, absl::string_view(data_array.data(), data_array.size()));
1729 invoked = true;
1730 };
1731 (void)MaybeHardened(absl::MakeCordFromExternal(data, releaser));
1732 EXPECT_TRUE(invoked);
1733 }
1734
TEST_P(CordTest,ConstructFromExternalFunctionPointerReleaser)1735 TEST_P(CordTest, ConstructFromExternalFunctionPointerReleaser) {
1736 static absl::string_view data("hello world");
1737 static bool invoked;
1738 auto* releaser =
1739 static_cast<void (*)(absl::string_view)>([](absl::string_view sv) {
1740 EXPECT_EQ(data, sv);
1741 invoked = true;
1742 });
1743 invoked = false;
1744 (void)MaybeHardened(absl::MakeCordFromExternal(data, releaser));
1745 EXPECT_TRUE(invoked);
1746
1747 invoked = false;
1748 (void)MaybeHardened(absl::MakeCordFromExternal(data, *releaser));
1749 EXPECT_TRUE(invoked);
1750 }
1751
TEST_P(CordTest,ConstructFromExternalMoveOnlyReleaser)1752 TEST_P(CordTest, ConstructFromExternalMoveOnlyReleaser) {
1753 struct Releaser {
1754 explicit Releaser(bool* invoked) : invoked(invoked) {}
1755 Releaser(Releaser&& other) noexcept : invoked(other.invoked) {}
1756 void operator()(absl::string_view) const { *invoked = true; }
1757
1758 bool* invoked;
1759 };
1760
1761 bool invoked = false;
1762 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", Releaser(&invoked)));
1763 EXPECT_TRUE(invoked);
1764 }
1765
TEST_P(CordTest,ConstructFromExternalNoArgLambda)1766 TEST_P(CordTest, ConstructFromExternalNoArgLambda) {
1767 bool invoked = false;
1768 (void)MaybeHardened(
1769 absl::MakeCordFromExternal("dummy", [&invoked]() { invoked = true; }));
1770 EXPECT_TRUE(invoked);
1771 }
1772
TEST_P(CordTest,ConstructFromExternalStringViewArgLambda)1773 TEST_P(CordTest, ConstructFromExternalStringViewArgLambda) {
1774 bool invoked = false;
1775 (void)MaybeHardened(absl::MakeCordFromExternal(
1776 "dummy", [&invoked](absl::string_view) { invoked = true; }));
1777 EXPECT_TRUE(invoked);
1778 }
1779
TEST_P(CordTest,ConstructFromExternalNonTrivialReleaserDestructor)1780 TEST_P(CordTest, ConstructFromExternalNonTrivialReleaserDestructor) {
1781 struct Releaser {
1782 explicit Releaser(bool* destroyed) : destroyed(destroyed) {}
1783 ~Releaser() { *destroyed = true; }
1784 void operator()(absl::string_view) const {}
1785
1786 bool* destroyed;
1787 };
1788
1789 bool destroyed = false;
1790 Releaser releaser(&destroyed);
1791 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser));
1792 EXPECT_TRUE(destroyed);
1793 }
1794
TEST_P(CordTest,ConstructFromExternalReferenceQualifierOverloads)1795 TEST_P(CordTest, ConstructFromExternalReferenceQualifierOverloads) {
1796 enum InvokedAs { kMissing, kLValue, kRValue };
1797 enum CopiedAs { kNone, kMove, kCopy };
1798 struct Tracker {
1799 CopiedAs copied_as = kNone;
1800 InvokedAs invoked_as = kMissing;
1801
1802 void Record(InvokedAs rhs) {
1803 ASSERT_EQ(invoked_as, kMissing);
1804 invoked_as = rhs;
1805 }
1806
1807 void Record(CopiedAs rhs) {
1808 if (copied_as == kNone || rhs == kCopy) copied_as = rhs;
1809 }
1810 } tracker;
1811
1812 class Releaser {
1813 public:
1814 explicit Releaser(Tracker* tracker) : tr_(tracker) { *tracker = Tracker(); }
1815 Releaser(Releaser&& rhs) : tr_(rhs.tr_) { tr_->Record(kMove); }
1816 Releaser(const Releaser& rhs) : tr_(rhs.tr_) { tr_->Record(kCopy); }
1817
1818 void operator()(absl::string_view) & { tr_->Record(kLValue); }
1819 void operator()(absl::string_view) && { tr_->Record(kRValue); }
1820
1821 private:
1822 Tracker* tr_;
1823 };
1824
1825 const Releaser releaser1(&tracker);
1826 (void)MaybeHardened(absl::MakeCordFromExternal("", releaser1));
1827 EXPECT_EQ(tracker.copied_as, kCopy);
1828 EXPECT_EQ(tracker.invoked_as, kRValue);
1829
1830 const Releaser releaser2(&tracker);
1831 (void)MaybeHardened(absl::MakeCordFromExternal("", releaser2));
1832 EXPECT_EQ(tracker.copied_as, kCopy);
1833 EXPECT_EQ(tracker.invoked_as, kRValue);
1834
1835 Releaser releaser3(&tracker);
1836 (void)MaybeHardened(absl::MakeCordFromExternal("", std::move(releaser3)));
1837 EXPECT_EQ(tracker.copied_as, kMove);
1838 EXPECT_EQ(tracker.invoked_as, kRValue);
1839
1840 Releaser releaser4(&tracker);
1841 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser4));
1842 EXPECT_EQ(tracker.copied_as, kCopy);
1843 EXPECT_EQ(tracker.invoked_as, kRValue);
1844
1845 const Releaser releaser5(&tracker);
1846 (void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser5));
1847 EXPECT_EQ(tracker.copied_as, kCopy);
1848 EXPECT_EQ(tracker.invoked_as, kRValue);
1849
1850 Releaser releaser6(&tracker);
1851 (void)MaybeHardened(absl::MakeCordFromExternal("foo", std::move(releaser6)));
1852 EXPECT_EQ(tracker.copied_as, kMove);
1853 EXPECT_EQ(tracker.invoked_as, kRValue);
1854 }
1855
TEST_P(CordTest,ExternalMemoryBasicUsage)1856 TEST_P(CordTest, ExternalMemoryBasicUsage) {
1857 static const char* strings[] = {"", "hello", "there"};
1858 for (const char* str : strings) {
1859 absl::Cord dst("(prefix)");
1860 MaybeHarden(dst);
1861 AddExternalMemory(str, &dst);
1862 MaybeHarden(dst);
1863 dst.Append("(suffix)");
1864 EXPECT_EQ((std::string("(prefix)") + str + std::string("(suffix)")),
1865 std::string(dst));
1866 }
1867 }
1868
TEST_P(CordTest,ExternalMemoryRemovePrefixSuffix)1869 TEST_P(CordTest, ExternalMemoryRemovePrefixSuffix) {
1870 // Exhaustively try all sub-strings.
1871 absl::Cord cord = MakeComposite();
1872 std::string s = std::string(cord);
1873 for (int offset = 0; offset <= s.size(); offset++) {
1874 for (int length = 0; length <= s.size() - offset; length++) {
1875 absl::Cord result(cord);
1876 MaybeHarden(result);
1877 result.RemovePrefix(offset);
1878 MaybeHarden(result);
1879 result.RemoveSuffix(result.size() - length);
1880 EXPECT_EQ(s.substr(offset, length), std::string(result))
1881 << offset << " " << length;
1882 }
1883 }
1884 }
1885
TEST_P(CordTest,ExternalMemoryGet)1886 TEST_P(CordTest, ExternalMemoryGet) {
1887 absl::Cord cord("hello");
1888 AddExternalMemory(" world!", &cord);
1889 MaybeHarden(cord);
1890 AddExternalMemory(" how are ", &cord);
1891 cord.Append(" you?");
1892 MaybeHarden(cord);
1893 std::string s = std::string(cord);
1894 for (int i = 0; i < s.size(); i++) {
1895 EXPECT_EQ(s[i], cord[i]);
1896 }
1897 }
1898
1899 // CordMemoryUsage tests verify the correctness of the EstimatedMemoryUsage()
1900 // We use whiteboxed expectations based on our knowledge of the layout and size
1901 // of empty and inlined cords, and flat nodes.
1902
1903 constexpr auto kFairShare = absl::CordMemoryAccounting::kFairShare;
1904 constexpr auto kTotalMorePrecise =
1905 absl::CordMemoryAccounting::kTotalMorePrecise;
1906
1907 // Creates a cord of `n` `c` values, making sure no string stealing occurs.
MakeCord(size_t n,char c)1908 absl::Cord MakeCord(size_t n, char c) {
1909 const std::string s(n, c);
1910 return absl::Cord(s);
1911 }
1912
TEST(CordTest,CordMemoryUsageEmpty)1913 TEST(CordTest, CordMemoryUsageEmpty) {
1914 absl::Cord cord;
1915 EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage());
1916 EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kFairShare));
1917 EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kTotalMorePrecise));
1918 }
1919
TEST(CordTest,CordMemoryUsageInlined)1920 TEST(CordTest, CordMemoryUsageInlined) {
1921 absl::Cord a("hello");
1922 EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
1923 EXPECT_EQ(a.EstimatedMemoryUsage(kFairShare), sizeof(absl::Cord));
1924 EXPECT_EQ(a.EstimatedMemoryUsage(kTotalMorePrecise), sizeof(absl::Cord));
1925 }
1926
TEST(CordTest,CordMemoryUsageExternalMemory)1927 TEST(CordTest, CordMemoryUsageExternalMemory) {
1928 absl::Cord cord;
1929 AddExternalMemory(std::string(1000, 'x'), &cord);
1930 const size_t expected =
1931 sizeof(absl::Cord) + 1000 + sizeof(CordRepExternal) + sizeof(intptr_t);
1932 EXPECT_EQ(cord.EstimatedMemoryUsage(), expected);
1933 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), expected);
1934 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise), expected);
1935 }
1936
TEST(CordTest,CordMemoryUsageFlat)1937 TEST(CordTest, CordMemoryUsageFlat) {
1938 absl::Cord cord = MakeCord(1000, 'a');
1939 const size_t flat_size =
1940 absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
1941 EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
1942 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1943 sizeof(absl::Cord) + flat_size);
1944 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
1945 sizeof(absl::Cord) + flat_size);
1946 }
1947
TEST(CordTest,CordMemoryUsageSubStringSharedFlat)1948 TEST(CordTest, CordMemoryUsageSubStringSharedFlat) {
1949 absl::Cord flat = MakeCord(2000, 'a');
1950 const size_t flat_size =
1951 absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
1952 absl::Cord cord = flat.Subcord(500, 1000);
1953 EXPECT_EQ(cord.EstimatedMemoryUsage(),
1954 sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size);
1955 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
1956 sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size);
1957 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1958 sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size / 2);
1959 }
1960
TEST(CordTest,CordMemoryUsageFlatShared)1961 TEST(CordTest, CordMemoryUsageFlatShared) {
1962 absl::Cord shared = MakeCord(1000, 'a');
1963 absl::Cord cord(shared);
1964 const size_t flat_size =
1965 absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
1966 EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
1967 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
1968 sizeof(absl::Cord) + flat_size);
1969 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1970 sizeof(absl::Cord) + flat_size / 2);
1971 }
1972
TEST(CordTest,CordMemoryUsageFlatHardenedAndShared)1973 TEST(CordTest, CordMemoryUsageFlatHardenedAndShared) {
1974 absl::Cord shared = MakeCord(1000, 'a');
1975 absl::Cord cord(shared);
1976 const size_t flat_size =
1977 absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
1978 cord.SetExpectedChecksum(1);
1979 EXPECT_EQ(cord.EstimatedMemoryUsage(),
1980 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
1981 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
1982 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size / 2);
1983
1984 absl::Cord cord2(cord);
1985 EXPECT_EQ(cord2.EstimatedMemoryUsage(),
1986 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
1987 EXPECT_EQ(cord2.EstimatedMemoryUsage(kTotalMorePrecise),
1988 sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
1989 EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
1990 sizeof(absl::Cord) + (sizeof(CordRepCrc) + flat_size / 2) / 2);
1991 }
1992
TEST(CordTest,CordMemoryUsageBTree)1993 TEST(CordTest, CordMemoryUsageBTree) {
1994 absl::Cord cord1;
1995 size_t flats1_size = 0;
1996 absl::Cord flats1[4] = {MakeCord(1000, 'a'), MakeCord(1100, 'a'),
1997 MakeCord(1200, 'a'), MakeCord(1300, 'a')};
1998 for (absl::Cord flat : flats1) {
1999 flats1_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
2000 cord1.Append(std::move(flat));
2001 }
2002
2003 // Make sure the created cord is a BTREE tree. Under some builds such as
2004 // windows DLL, we may have ODR like effects on the flag, meaning the DLL
2005 // code will run with the picked up default.
2006 if (!absl::CordTestPeer::Tree(cord1)->IsBtree()) {
2007 LOG(WARNING) << "Cord library code not respecting btree flag";
2008 return;
2009 }
2010
2011 size_t rep1_size = sizeof(CordRepBtree) + flats1_size;
2012 size_t rep1_shared_size = sizeof(CordRepBtree) + flats1_size / 2;
2013
2014 EXPECT_EQ(cord1.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep1_size);
2015 EXPECT_EQ(cord1.EstimatedMemoryUsage(kTotalMorePrecise),
2016 sizeof(absl::Cord) + rep1_size);
2017 EXPECT_EQ(cord1.EstimatedMemoryUsage(kFairShare),
2018 sizeof(absl::Cord) + rep1_shared_size);
2019
2020 absl::Cord cord2;
2021 size_t flats2_size = 0;
2022 absl::Cord flats2[4] = {MakeCord(600, 'a'), MakeCord(700, 'a'),
2023 MakeCord(800, 'a'), MakeCord(900, 'a')};
2024 for (absl::Cord& flat : flats2) {
2025 flats2_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
2026 cord2.Append(std::move(flat));
2027 }
2028 size_t rep2_size = sizeof(CordRepBtree) + flats2_size;
2029
2030 EXPECT_EQ(cord2.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep2_size);
2031 EXPECT_EQ(cord2.EstimatedMemoryUsage(kTotalMorePrecise),
2032 sizeof(absl::Cord) + rep2_size);
2033 EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
2034 sizeof(absl::Cord) + rep2_size);
2035
2036 absl::Cord cord(cord1);
2037 cord.Append(std::move(cord2));
2038
2039 EXPECT_EQ(cord.EstimatedMemoryUsage(),
2040 sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size);
2041 EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
2042 sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size);
2043 EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
2044 sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_shared_size / 2 +
2045 rep2_size);
2046 }
2047
TEST(CordTest,TestHashFragmentation)2048 TEST(CordTest, TestHashFragmentation) {
2049 // Make sure we hit these boundary cases precisely.
2050 EXPECT_EQ(1024, absl::hash_internal::PiecewiseChunkSize());
2051 EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
2052 absl::Cord(),
2053 absl::MakeFragmentedCord({std::string(600, 'a'), std::string(600, 'a')}),
2054 absl::MakeFragmentedCord({std::string(1200, 'a')}),
2055 absl::MakeFragmentedCord({std::string(900, 'b'), std::string(900, 'b')}),
2056 absl::MakeFragmentedCord({std::string(1800, 'b')}),
2057 absl::MakeFragmentedCord(
2058 {std::string(2000, 'c'), std::string(2000, 'c')}),
2059 absl::MakeFragmentedCord({std::string(4000, 'c')}),
2060 absl::MakeFragmentedCord({std::string(1024, 'd')}),
2061 absl::MakeFragmentedCord({std::string(1023, 'd'), "d"}),
2062 absl::MakeFragmentedCord({std::string(1025, 'e')}),
2063 absl::MakeFragmentedCord({std::string(1024, 'e'), "e"}),
2064 absl::MakeFragmentedCord({std::string(1023, 'e'), "e", "e"}),
2065 }));
2066 }
2067
2068 // Regtest for a change that had to be rolled back because it expanded out
2069 // of the InlineRep too soon, which was observable through MemoryUsage().
TEST_P(CordTest,CordMemoryUsageInlineRep)2070 TEST_P(CordTest, CordMemoryUsageInlineRep) {
2071 constexpr size_t kMaxInline = 15; // Cord::InlineRep::N
2072 const std::string small_string(kMaxInline, 'x');
2073 absl::Cord c1(small_string);
2074
2075 absl::Cord c2;
2076 c2.Append(small_string);
2077 EXPECT_EQ(c1, c2);
2078 EXPECT_EQ(c1.EstimatedMemoryUsage(), c2.EstimatedMemoryUsage());
2079 }
2080
TEST_P(CordTest,CordMemoryUsageTotalMorePreciseMode)2081 TEST_P(CordTest, CordMemoryUsageTotalMorePreciseMode) {
2082 constexpr size_t kChunkSize = 2000;
2083 std::string tmp_str(kChunkSize, 'x');
2084 const absl::Cord flat(std::move(tmp_str));
2085
2086 // Construct `fragmented` with two references into the same
2087 // underlying buffer shared with `flat`:
2088 absl::Cord fragmented(flat);
2089 fragmented.Append(flat);
2090
2091 // Memory usage of `flat`, minus the top-level Cord object:
2092 const size_t flat_internal_usage =
2093 flat.EstimatedMemoryUsage() - sizeof(absl::Cord);
2094
2095 // `fragmented` holds a Cord and a CordRepBtree. That tree points to two
2096 // copies of flat's internals, which we expect to dedup:
2097 EXPECT_EQ(fragmented.EstimatedMemoryUsage(kTotalMorePrecise),
2098 sizeof(absl::Cord) +
2099 sizeof(CordRepBtree) +
2100 flat_internal_usage);
2101
2102 // This is a case where kTotal produces an overestimate:
2103 EXPECT_EQ(fragmented.EstimatedMemoryUsage(),
2104 sizeof(absl::Cord) +
2105 sizeof(CordRepBtree) +
2106 2 * flat_internal_usage);
2107 }
2108
TEST_P(CordTest,CordMemoryUsageTotalMorePreciseModeWithSubstring)2109 TEST_P(CordTest, CordMemoryUsageTotalMorePreciseModeWithSubstring) {
2110 constexpr size_t kChunkSize = 2000;
2111 std::string tmp_str(kChunkSize, 'x');
2112 const absl::Cord flat(std::move(tmp_str));
2113
2114 // Construct `fragmented` with two references into the same
2115 // underlying buffer shared with `flat`.
2116 //
2117 // This time, each reference is through a Subcord():
2118 absl::Cord fragmented;
2119 fragmented.Append(flat.Subcord(1, kChunkSize - 2));
2120 fragmented.Append(flat.Subcord(1, kChunkSize - 2));
2121
2122 // Memory usage of `flat`, minus the top-level Cord object:
2123 const size_t flat_internal_usage =
2124 flat.EstimatedMemoryUsage() - sizeof(absl::Cord);
2125
2126 // `fragmented` holds a Cord and a CordRepBtree. That tree points to two
2127 // CordRepSubstrings, each pointing at flat's internals.
2128 EXPECT_EQ(fragmented.EstimatedMemoryUsage(kTotalMorePrecise),
2129 sizeof(absl::Cord) +
2130 sizeof(CordRepBtree) +
2131 2 * sizeof(CordRepSubstring) +
2132 flat_internal_usage);
2133
2134 // This is a case where kTotal produces an overestimate:
2135 EXPECT_EQ(fragmented.EstimatedMemoryUsage(),
2136 sizeof(absl::Cord) +
2137 sizeof(CordRepBtree) +
2138 2 * sizeof(CordRepSubstring) +
2139 2 * flat_internal_usage);
2140 }
2141 } // namespace
2142
2143 // Regtest for 7510292 (fix a bug introduced by 7465150)
TEST_P(CordTest,Concat_Append)2144 TEST_P(CordTest, Concat_Append) {
2145 // Create a rep of type CONCAT
2146 absl::Cord s1("foobarbarbarbarbar");
2147 MaybeHarden(s1);
2148 s1.Append("abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg");
2149 size_t size = s1.size();
2150
2151 // Create a copy of s1 and append to it.
2152 absl::Cord s2 = s1;
2153 MaybeHarden(s2);
2154 s2.Append("x");
2155
2156 // 7465150 modifies s1 when it shouldn't.
2157 EXPECT_EQ(s1.size(), size);
2158 EXPECT_EQ(s2.size(), size + 1);
2159 }
2160
TEST_P(CordTest,DiabolicalGrowth)2161 TEST_P(CordTest, DiabolicalGrowth) {
2162 // This test exercises a diabolical Append(<one char>) on a cord, making the
2163 // cord shared before each Append call resulting in a terribly fragmented
2164 // resulting cord.
2165 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2166 const std::string expected = RandomLowercaseString(&rng, 5000);
2167 absl::Cord cord;
2168 for (char c : expected) {
2169 absl::Cord shared(cord);
2170 cord.Append(absl::string_view(&c, 1));
2171 MaybeHarden(cord);
2172 }
2173 std::string value;
2174 absl::CopyCordToString(cord, &value);
2175 EXPECT_EQ(value, expected);
2176 LOG(INFO) << "Diabolical size allocated = " << cord.EstimatedMemoryUsage();
2177 }
2178
2179 // The following tests check support for >4GB cords in 64-bit binaries, and
2180 // 2GB-4GB cords in 32-bit binaries. This function returns the large cord size
2181 // that's appropriate for the binary.
2182
2183 // Construct a huge cord with the specified valid prefix.
MakeHuge(absl::string_view prefix)2184 static absl::Cord MakeHuge(absl::string_view prefix) {
2185 absl::Cord cord;
2186 if (sizeof(size_t) > 4) {
2187 // In 64-bit binaries, test 64-bit Cord support.
2188 const size_t size =
2189 static_cast<size_t>(std::numeric_limits<uint32_t>::max()) + 314;
2190 cord.Append(absl::MakeCordFromExternal(
2191 absl::string_view(prefix.data(), size),
2192 [](absl::string_view s) { DoNothing(s, nullptr); }));
2193 } else {
2194 // Cords are limited to 32-bit lengths in 32-bit binaries. The following
2195 // tests check for use of "signed int" to represent Cord length/offset.
2196 // However absl::string_view does not allow lengths >= (1u<<31), so we need
2197 // to append in two parts;
2198 const size_t s1 = (1u << 31) - 1;
2199 // For shorter cord, `Append` copies the data rather than allocating a new
2200 // node. The threshold is currently set to 511, so `s2` needs to be bigger
2201 // to not trigger the copy.
2202 const size_t s2 = 600;
2203 cord.Append(absl::MakeCordFromExternal(
2204 absl::string_view(prefix.data(), s1),
2205 [](absl::string_view s) { DoNothing(s, nullptr); }));
2206 cord.Append(absl::MakeCordFromExternal(
2207 absl::string_view("", s2),
2208 [](absl::string_view s) { DoNothing(s, nullptr); }));
2209 }
2210 return cord;
2211 }
2212
TEST_P(CordTest,HugeCord)2213 TEST_P(CordTest, HugeCord) {
2214 absl::Cord cord = MakeHuge("huge cord");
2215 MaybeHarden(cord);
2216
2217 const size_t acceptable_delta =
2218 100 + (UseCrc() ? sizeof(absl::cord_internal::CordRepCrc) : 0);
2219 EXPECT_LE(cord.size(), cord.EstimatedMemoryUsage());
2220 EXPECT_GE(cord.size() + acceptable_delta, cord.EstimatedMemoryUsage());
2221 }
2222
2223 // Tests that Append() works ok when handed a self reference
TEST_P(CordTest,AppendSelf)2224 TEST_P(CordTest, AppendSelf) {
2225 // Test the empty case.
2226 absl::Cord empty;
2227 MaybeHarden(empty);
2228 empty.Append(empty);
2229 ASSERT_EQ(empty, "");
2230
2231 // We run the test until data is ~16K
2232 // This guarantees it covers small, medium and large data.
2233 std::string control_data = "Abc";
2234 absl::Cord data(control_data);
2235 while (control_data.length() < 0x4000) {
2236 MaybeHarden(data);
2237 data.Append(data);
2238 control_data.append(control_data);
2239 ASSERT_EQ(control_data, data);
2240 }
2241 }
2242
TEST_P(CordTest,MakeFragmentedCordFromInitializerList)2243 TEST_P(CordTest, MakeFragmentedCordFromInitializerList) {
2244 absl::Cord fragmented =
2245 absl::MakeFragmentedCord({"A ", "fragmented ", "Cord"});
2246
2247 MaybeHarden(fragmented);
2248
2249 EXPECT_EQ("A fragmented Cord", fragmented);
2250
2251 auto chunk_it = fragmented.chunk_begin();
2252
2253 ASSERT_TRUE(chunk_it != fragmented.chunk_end());
2254 EXPECT_EQ("A ", *chunk_it);
2255
2256 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2257 EXPECT_EQ("fragmented ", *chunk_it);
2258
2259 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2260 EXPECT_EQ("Cord", *chunk_it);
2261
2262 ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
2263 }
2264
TEST_P(CordTest,MakeFragmentedCordFromVector)2265 TEST_P(CordTest, MakeFragmentedCordFromVector) {
2266 std::vector<absl::string_view> chunks = {"A ", "fragmented ", "Cord"};
2267 absl::Cord fragmented = absl::MakeFragmentedCord(chunks);
2268
2269 MaybeHarden(fragmented);
2270
2271 EXPECT_EQ("A fragmented Cord", fragmented);
2272
2273 auto chunk_it = fragmented.chunk_begin();
2274
2275 ASSERT_TRUE(chunk_it != fragmented.chunk_end());
2276 EXPECT_EQ("A ", *chunk_it);
2277
2278 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2279 EXPECT_EQ("fragmented ", *chunk_it);
2280
2281 ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
2282 EXPECT_EQ("Cord", *chunk_it);
2283
2284 ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
2285 }
2286
TEST_P(CordTest,CordChunkIteratorTraits)2287 TEST_P(CordTest, CordChunkIteratorTraits) {
2288 static_assert(std::is_copy_constructible<absl::Cord::ChunkIterator>::value,
2289 "");
2290 static_assert(std::is_copy_assignable<absl::Cord::ChunkIterator>::value, "");
2291
2292 // Move semantics to satisfy swappable via std::swap
2293 static_assert(std::is_move_constructible<absl::Cord::ChunkIterator>::value,
2294 "");
2295 static_assert(std::is_move_assignable<absl::Cord::ChunkIterator>::value, "");
2296
2297 static_assert(
2298 std::is_same<
2299 std::iterator_traits<absl::Cord::ChunkIterator>::iterator_category,
2300 std::input_iterator_tag>::value,
2301 "");
2302 static_assert(
2303 std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::value_type,
2304 absl::string_view>::value,
2305 "");
2306 static_assert(
2307 std::is_same<
2308 std::iterator_traits<absl::Cord::ChunkIterator>::difference_type,
2309 ptrdiff_t>::value,
2310 "");
2311 static_assert(
2312 std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::pointer,
2313 const absl::string_view*>::value,
2314 "");
2315 static_assert(
2316 std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::reference,
2317 absl::string_view>::value,
2318 "");
2319 }
2320
VerifyChunkIterator(const absl::Cord & cord,size_t expected_chunks)2321 static void VerifyChunkIterator(const absl::Cord& cord,
2322 size_t expected_chunks) {
2323 EXPECT_EQ(cord.chunk_begin() == cord.chunk_end(), cord.empty()) << cord;
2324 EXPECT_EQ(cord.chunk_begin() != cord.chunk_end(), !cord.empty());
2325
2326 absl::Cord::ChunkRange range = cord.Chunks();
2327 EXPECT_EQ(range.begin() == range.end(), cord.empty());
2328 EXPECT_EQ(range.begin() != range.end(), !cord.empty());
2329
2330 std::string content(cord);
2331 size_t pos = 0;
2332 auto pre_iter = cord.chunk_begin(), post_iter = cord.chunk_begin();
2333 size_t n_chunks = 0;
2334 while (pre_iter != cord.chunk_end() && post_iter != cord.chunk_end()) {
2335 EXPECT_FALSE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test ==
2336 EXPECT_FALSE(post_iter == cord.chunk_end()); // NOLINT
2337
2338 EXPECT_EQ(pre_iter, post_iter);
2339 EXPECT_EQ(*pre_iter, *post_iter);
2340
2341 EXPECT_EQ(pre_iter->data(), (*pre_iter).data());
2342 EXPECT_EQ(pre_iter->size(), (*pre_iter).size());
2343
2344 absl::string_view chunk = *pre_iter;
2345 EXPECT_FALSE(chunk.empty());
2346 EXPECT_LE(pos + chunk.size(), content.size());
2347 EXPECT_EQ(absl::string_view(content.c_str() + pos, chunk.size()), chunk);
2348
2349 int n_equal_iterators = 0;
2350 for (absl::Cord::ChunkIterator it = range.begin(); it != range.end();
2351 ++it) {
2352 n_equal_iterators += static_cast<int>(it == pre_iter);
2353 }
2354 EXPECT_EQ(n_equal_iterators, 1);
2355
2356 ++pre_iter;
2357 EXPECT_EQ(*post_iter++, chunk);
2358
2359 pos += chunk.size();
2360 ++n_chunks;
2361 }
2362 EXPECT_EQ(expected_chunks, n_chunks);
2363 EXPECT_EQ(pos, content.size());
2364 EXPECT_TRUE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test ==
2365 EXPECT_TRUE(post_iter == cord.chunk_end()); // NOLINT
2366 }
2367
TEST_P(CordTest,CordChunkIteratorOperations)2368 TEST_P(CordTest, CordChunkIteratorOperations) {
2369 absl::Cord empty_cord;
2370 VerifyChunkIterator(empty_cord, 0);
2371
2372 absl::Cord small_buffer_cord("small cord");
2373 MaybeHarden(small_buffer_cord);
2374 VerifyChunkIterator(small_buffer_cord, 1);
2375
2376 absl::Cord flat_node_cord("larger than small buffer optimization");
2377 MaybeHarden(flat_node_cord);
2378 VerifyChunkIterator(flat_node_cord, 1);
2379
2380 VerifyChunkIterator(MaybeHardened(absl::MakeFragmentedCord(
2381 {"a ", "small ", "fragmented ", "cord ", "for ",
2382 "testing ", "chunk ", "iterations."})),
2383 8);
2384
2385 absl::Cord reused_nodes_cord(std::string(40, 'c'));
2386 reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'b')));
2387 MaybeHarden(reused_nodes_cord);
2388 reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'a')));
2389 size_t expected_chunks = 3;
2390 for (int i = 0; i < 8; ++i) {
2391 reused_nodes_cord.Prepend(reused_nodes_cord);
2392 MaybeHarden(reused_nodes_cord);
2393 expected_chunks *= 2;
2394 VerifyChunkIterator(reused_nodes_cord, expected_chunks);
2395 }
2396
2397 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2398 absl::Cord flat_cord(RandomLowercaseString(&rng, 256));
2399 absl::Cord subcords;
2400 for (int i = 0; i < 128; ++i) subcords.Prepend(flat_cord.Subcord(i, 128));
2401 VerifyChunkIterator(subcords, 128);
2402 }
2403
2404
TEST_P(CordTest,AdvanceAndReadOnDataEdge)2405 TEST_P(CordTest, AdvanceAndReadOnDataEdge) {
2406 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2407 const std::string data = RandomLowercaseString(&rng, 2000);
2408 for (bool as_flat : {true, false}) {
2409 SCOPED_TRACE(as_flat ? "Flat" : "External");
2410
2411 absl::Cord cord =
2412 as_flat ? absl::Cord(data)
2413 : absl::MakeCordFromExternal(data, [](absl::string_view) {});
2414 auto it = cord.Chars().begin();
2415 #if !defined(NDEBUG) || ABSL_OPTION_HARDENED
2416 EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*");
2417 #endif
2418
2419 it = cord.Chars().begin();
2420 absl::Cord frag = cord.AdvanceAndRead(&it, 2000);
2421 EXPECT_EQ(frag, data);
2422 EXPECT_TRUE(it == cord.Chars().end());
2423
2424 it = cord.Chars().begin();
2425 frag = cord.AdvanceAndRead(&it, 200);
2426 EXPECT_EQ(frag, data.substr(0, 200));
2427 EXPECT_FALSE(it == cord.Chars().end());
2428
2429 frag = cord.AdvanceAndRead(&it, 1500);
2430 EXPECT_EQ(frag, data.substr(200, 1500));
2431 EXPECT_FALSE(it == cord.Chars().end());
2432
2433 frag = cord.AdvanceAndRead(&it, 300);
2434 EXPECT_EQ(frag, data.substr(1700, 300));
2435 EXPECT_TRUE(it == cord.Chars().end());
2436 }
2437 }
2438
TEST_P(CordTest,AdvanceAndReadOnSubstringDataEdge)2439 TEST_P(CordTest, AdvanceAndReadOnSubstringDataEdge) {
2440 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2441 const std::string data = RandomLowercaseString(&rng, 2500);
2442 for (bool as_flat : {true, false}) {
2443 SCOPED_TRACE(as_flat ? "Flat" : "External");
2444
2445 absl::Cord cord =
2446 as_flat ? absl::Cord(data)
2447 : absl::MakeCordFromExternal(data, [](absl::string_view) {});
2448 cord = cord.Subcord(200, 2000);
2449 const std::string substr = data.substr(200, 2000);
2450
2451 auto it = cord.Chars().begin();
2452 #if !defined(NDEBUG) || ABSL_OPTION_HARDENED
2453 EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*");
2454 #endif
2455
2456 it = cord.Chars().begin();
2457 absl::Cord frag = cord.AdvanceAndRead(&it, 2000);
2458 EXPECT_EQ(frag, substr);
2459 EXPECT_TRUE(it == cord.Chars().end());
2460
2461 it = cord.Chars().begin();
2462 frag = cord.AdvanceAndRead(&it, 200);
2463 EXPECT_EQ(frag, substr.substr(0, 200));
2464 EXPECT_FALSE(it == cord.Chars().end());
2465
2466 frag = cord.AdvanceAndRead(&it, 1500);
2467 EXPECT_EQ(frag, substr.substr(200, 1500));
2468 EXPECT_FALSE(it == cord.Chars().end());
2469
2470 frag = cord.AdvanceAndRead(&it, 300);
2471 EXPECT_EQ(frag, substr.substr(1700, 300));
2472 EXPECT_TRUE(it == cord.Chars().end());
2473 }
2474 }
2475
TEST_P(CordTest,CharIteratorTraits)2476 TEST_P(CordTest, CharIteratorTraits) {
2477 static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value,
2478 "");
2479 static_assert(std::is_copy_assignable<absl::Cord::CharIterator>::value, "");
2480
2481 // Move semantics to satisfy swappable via std::swap
2482 static_assert(std::is_move_constructible<absl::Cord::CharIterator>::value,
2483 "");
2484 static_assert(std::is_move_assignable<absl::Cord::CharIterator>::value, "");
2485
2486 static_assert(
2487 std::is_same<
2488 std::iterator_traits<absl::Cord::CharIterator>::iterator_category,
2489 std::input_iterator_tag>::value,
2490 "");
2491 static_assert(
2492 std::is_same<std::iterator_traits<absl::Cord::CharIterator>::value_type,
2493 char>::value,
2494 "");
2495 static_assert(
2496 std::is_same<
2497 std::iterator_traits<absl::Cord::CharIterator>::difference_type,
2498 ptrdiff_t>::value,
2499 "");
2500 static_assert(
2501 std::is_same<std::iterator_traits<absl::Cord::CharIterator>::pointer,
2502 const char*>::value,
2503 "");
2504 static_assert(
2505 std::is_same<std::iterator_traits<absl::Cord::CharIterator>::reference,
2506 const char&>::value,
2507 "");
2508 }
2509
VerifyCharIterator(const absl::Cord & cord)2510 static void VerifyCharIterator(const absl::Cord& cord) {
2511 EXPECT_EQ(cord.char_begin() == cord.char_end(), cord.empty());
2512 EXPECT_EQ(cord.char_begin() != cord.char_end(), !cord.empty());
2513
2514 absl::Cord::CharRange range = cord.Chars();
2515 EXPECT_EQ(range.begin() == range.end(), cord.empty());
2516 EXPECT_EQ(range.begin() != range.end(), !cord.empty());
2517
2518 size_t i = 0;
2519 absl::Cord::CharIterator pre_iter = cord.char_begin();
2520 absl::Cord::CharIterator post_iter = cord.char_begin();
2521 std::string content(cord);
2522 while (pre_iter != cord.char_end() && post_iter != cord.char_end()) {
2523 EXPECT_FALSE(pre_iter == cord.char_end()); // NOLINT: explicitly test ==
2524 EXPECT_FALSE(post_iter == cord.char_end()); // NOLINT
2525
2526 EXPECT_LT(i, cord.size());
2527 EXPECT_EQ(content[i], *pre_iter);
2528
2529 EXPECT_EQ(pre_iter, post_iter);
2530 EXPECT_EQ(*pre_iter, *post_iter);
2531 EXPECT_EQ(&*pre_iter, &*post_iter);
2532
2533 EXPECT_EQ(&*pre_iter, pre_iter.operator->());
2534
2535 const char* character_address = &*pre_iter;
2536 absl::Cord::CharIterator copy = pre_iter;
2537 ++copy;
2538 EXPECT_EQ(character_address, &*pre_iter);
2539
2540 int n_equal_iterators = 0;
2541 for (absl::Cord::CharIterator it = range.begin(); it != range.end(); ++it) {
2542 n_equal_iterators += static_cast<int>(it == pre_iter);
2543 }
2544 EXPECT_EQ(n_equal_iterators, 1);
2545
2546 absl::Cord::CharIterator advance_iter = range.begin();
2547 absl::Cord::Advance(&advance_iter, i);
2548 EXPECT_EQ(pre_iter, advance_iter);
2549
2550 advance_iter = range.begin();
2551 EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, i), cord.Subcord(0, i));
2552 EXPECT_EQ(pre_iter, advance_iter);
2553
2554 advance_iter = pre_iter;
2555 absl::Cord::Advance(&advance_iter, cord.size() - i);
2556 EXPECT_EQ(range.end(), advance_iter);
2557
2558 advance_iter = pre_iter;
2559 EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, cord.size() - i),
2560 cord.Subcord(i, cord.size() - i));
2561 EXPECT_EQ(range.end(), advance_iter);
2562
2563 ++i;
2564 ++pre_iter;
2565 post_iter++;
2566 }
2567 EXPECT_EQ(i, cord.size());
2568 EXPECT_TRUE(pre_iter == cord.char_end()); // NOLINT: explicitly test ==
2569 EXPECT_TRUE(post_iter == cord.char_end()); // NOLINT
2570
2571 absl::Cord::CharIterator zero_advanced_end = cord.char_end();
2572 absl::Cord::Advance(&zero_advanced_end, 0);
2573 EXPECT_EQ(zero_advanced_end, cord.char_end());
2574
2575 absl::Cord::CharIterator it = cord.char_begin();
2576 for (absl::string_view chunk : cord.Chunks()) {
2577 while (!chunk.empty()) {
2578 EXPECT_EQ(absl::Cord::ChunkRemaining(it), chunk);
2579 chunk.remove_prefix(1);
2580 ++it;
2581 }
2582 }
2583 }
2584
TEST_P(CordTest,CharIteratorOperations)2585 TEST_P(CordTest, CharIteratorOperations) {
2586 absl::Cord empty_cord;
2587 VerifyCharIterator(empty_cord);
2588
2589 absl::Cord small_buffer_cord("small cord");
2590 MaybeHarden(small_buffer_cord);
2591 VerifyCharIterator(small_buffer_cord);
2592
2593 absl::Cord flat_node_cord("larger than small buffer optimization");
2594 MaybeHarden(flat_node_cord);
2595 VerifyCharIterator(flat_node_cord);
2596
2597 VerifyCharIterator(MaybeHardened(
2598 absl::MakeFragmentedCord({"a ", "small ", "fragmented ", "cord ", "for ",
2599 "testing ", "character ", "iteration."})));
2600
2601 absl::Cord reused_nodes_cord("ghi");
2602 reused_nodes_cord.Prepend(absl::Cord("def"));
2603 reused_nodes_cord.Prepend(absl::Cord("abc"));
2604 for (int i = 0; i < 4; ++i) {
2605 reused_nodes_cord.Prepend(reused_nodes_cord);
2606 MaybeHarden(reused_nodes_cord);
2607 VerifyCharIterator(reused_nodes_cord);
2608 }
2609
2610 RandomEngine rng(GTEST_FLAG_GET(random_seed));
2611 absl::Cord flat_cord(RandomLowercaseString(&rng, 256));
2612 absl::Cord subcords;
2613 for (int i = 0; i < 4; ++i) {
2614 subcords.Prepend(flat_cord.Subcord(16 * i, 128));
2615 MaybeHarden(subcords);
2616 }
2617 VerifyCharIterator(subcords);
2618 }
2619
TEST_P(CordTest,CharIteratorAdvanceAndRead)2620 TEST_P(CordTest, CharIteratorAdvanceAndRead) {
2621 // Create a Cord holding 6 flats of 2500 bytes each, and then iterate over it
2622 // reading 150, 1500, 2500 and 3000 bytes. This will result in all possible
2623 // partial, full and straddled read combinations including reads below
2624 // kMaxBytesToCopy. b/197776822 surfaced a bug for a specific partial, small
2625 // read 'at end' on Cord which caused a failure on attempting to read past the
2626 // end in CordRepBtreeReader which was not covered by any existing test.
2627 constexpr int kBlocks = 6;
2628 constexpr size_t kBlockSize = 2500;
2629 constexpr size_t kChunkSize1 = 1500;
2630 constexpr size_t kChunkSize2 = 2500;
2631 constexpr size_t kChunkSize3 = 3000;
2632 constexpr size_t kChunkSize4 = 150;
2633 RandomEngine rng;
2634 std::string data = RandomLowercaseString(&rng, kBlocks * kBlockSize);
2635 absl::Cord cord;
2636 for (int i = 0; i < kBlocks; ++i) {
2637 const std::string block = data.substr(i * kBlockSize, kBlockSize);
2638 cord.Append(absl::Cord(block));
2639 }
2640
2641 MaybeHarden(cord);
2642
2643 for (size_t chunk_size :
2644 {kChunkSize1, kChunkSize2, kChunkSize3, kChunkSize4}) {
2645 absl::Cord::CharIterator it = cord.char_begin();
2646 size_t offset = 0;
2647 while (offset < data.length()) {
2648 const size_t n = std::min<size_t>(data.length() - offset, chunk_size);
2649 absl::Cord chunk = cord.AdvanceAndRead(&it, n);
2650 ASSERT_EQ(chunk.size(), n);
2651 ASSERT_EQ(chunk.Compare(data.substr(offset, n)), 0);
2652 offset += n;
2653 }
2654 }
2655 }
2656
TEST_P(CordTest,StreamingOutput)2657 TEST_P(CordTest, StreamingOutput) {
2658 absl::Cord c =
2659 absl::MakeFragmentedCord({"A ", "small ", "fragmented ", "Cord", "."});
2660 MaybeHarden(c);
2661 std::stringstream output;
2662 output << c;
2663 EXPECT_EQ("A small fragmented Cord.", output.str());
2664 }
2665
TEST_P(CordTest,ForEachChunk)2666 TEST_P(CordTest, ForEachChunk) {
2667 for (int num_elements : {1, 10, 200}) {
2668 SCOPED_TRACE(num_elements);
2669 std::vector<std::string> cord_chunks;
2670 for (int i = 0; i < num_elements; ++i) {
2671 cord_chunks.push_back(absl::StrCat("[", i, "]"));
2672 }
2673 absl::Cord c = absl::MakeFragmentedCord(cord_chunks);
2674 MaybeHarden(c);
2675
2676 std::vector<std::string> iterated_chunks;
2677 absl::CordTestPeer::ForEachChunk(c,
2678 [&iterated_chunks](absl::string_view sv) {
2679 iterated_chunks.emplace_back(sv);
2680 });
2681 EXPECT_EQ(iterated_chunks, cord_chunks);
2682 }
2683 }
2684
TEST_P(CordTest,SmallBufferAssignFromOwnData)2685 TEST_P(CordTest, SmallBufferAssignFromOwnData) {
2686 constexpr size_t kMaxInline = 15;
2687 std::string contents = "small buff cord";
2688 EXPECT_EQ(contents.size(), kMaxInline);
2689 for (size_t pos = 0; pos < contents.size(); ++pos) {
2690 for (size_t count = contents.size() - pos; count > 0; --count) {
2691 absl::Cord c(contents);
2692 MaybeHarden(c);
2693 absl::string_view flat = c.Flatten();
2694 c = flat.substr(pos, count);
2695 EXPECT_EQ(c, contents.substr(pos, count))
2696 << "pos = " << pos << "; count = " << count;
2697 }
2698 }
2699 }
2700
TEST_P(CordTest,Format)2701 TEST_P(CordTest, Format) {
2702 absl::Cord c;
2703 absl::Format(&c, "There were %04d little %s.", 3, "pigs");
2704 EXPECT_EQ(c, "There were 0003 little pigs.");
2705 MaybeHarden(c);
2706 absl::Format(&c, "And %-3llx bad wolf!", 1);
2707 MaybeHarden(c);
2708 EXPECT_EQ(c, "There were 0003 little pigs.And 1 bad wolf!");
2709 }
2710
TEST_P(CordTest,Stringify)2711 TEST_P(CordTest, Stringify) {
2712 absl::Cord c =
2713 absl::MakeFragmentedCord({"A ", "small ", "fragmented ", "Cord", "."});
2714 MaybeHarden(c);
2715 EXPECT_EQ(absl::StrCat(c), "A small fragmented Cord.");
2716 }
2717
TEST_P(CordTest,Hardening)2718 TEST_P(CordTest, Hardening) {
2719 absl::Cord cord("hello");
2720 MaybeHarden(cord);
2721
2722 // These statement should abort the program in all builds modes.
2723 EXPECT_DEATH_IF_SUPPORTED(cord.RemovePrefix(6), "");
2724 EXPECT_DEATH_IF_SUPPORTED(cord.RemoveSuffix(6), "");
2725
2726 bool test_hardening = false;
2727 ABSL_HARDENING_ASSERT([&]() {
2728 // This only runs when ABSL_HARDENING_ASSERT is active.
2729 test_hardening = true;
2730 return true;
2731 }());
2732 if (!test_hardening) return;
2733
2734 EXPECT_DEATH_IF_SUPPORTED(cord[5], "");
2735 EXPECT_DEATH_IF_SUPPORTED(*cord.chunk_end(), "");
2736 EXPECT_DEATH_IF_SUPPORTED(static_cast<void>(cord.chunk_end()->empty()), "");
2737 EXPECT_DEATH_IF_SUPPORTED(++cord.chunk_end(), "");
2738 }
2739
2740 // This test mimics a specific (and rare) application repeatedly splitting a
2741 // cord, inserting (overwriting) a string value, and composing a new cord from
2742 // the three pieces. This is hostile towards a Btree implementation: A split of
2743 // a node at any level is likely to have the right-most edge of the left split,
2744 // and the left-most edge of the right split shared. For example, splitting a
2745 // leaf node with 6 edges will result likely in a 1-6, 2-5, 3-4, etc. split,
2746 // sharing the 'split node'. When recomposing such nodes, we 'injected' an edge
2747 // in that node. As this happens with some probability on each level of the
2748 // tree, this will quickly grow the tree until it reaches maximum height.
TEST_P(CordTest,BtreeHostileSplitInsertJoin)2749 TEST_P(CordTest, BtreeHostileSplitInsertJoin) {
2750 absl::BitGen bitgen;
2751
2752 // Start with about 1GB of data
2753 std::string data(1 << 10, 'x');
2754 absl::Cord buffer(data);
2755 absl::Cord cord;
2756 for (int i = 0; i < 1000000; ++i) {
2757 cord.Append(buffer);
2758 }
2759
2760 for (int j = 0; j < 1000; ++j) {
2761 MaybeHarden(cord);
2762 size_t offset = absl::Uniform(bitgen, 0u, cord.size());
2763 size_t length = absl::Uniform(bitgen, 100u, data.size());
2764 if (cord.size() == offset) {
2765 cord.Append(absl::string_view(data.data(), length));
2766 } else {
2767 absl::Cord suffix;
2768 if (offset + length < cord.size()) {
2769 suffix = cord;
2770 suffix.RemovePrefix(offset + length);
2771 }
2772 if (cord.size() > offset) {
2773 cord.RemoveSuffix(cord.size() - offset);
2774 }
2775 cord.Append(absl::string_view(data.data(), length));
2776 if (!suffix.empty()) {
2777 cord.Append(suffix);
2778 }
2779 }
2780 }
2781 }
2782
2783 class AfterExitCordTester {
2784 public:
Set(absl::Cord * cord,absl::string_view expected)2785 bool Set(absl::Cord* cord, absl::string_view expected) {
2786 cord_ = cord;
2787 expected_ = expected;
2788 return true;
2789 }
2790
~AfterExitCordTester()2791 ~AfterExitCordTester() {
2792 EXPECT_EQ(*cord_, expected_);
2793 }
2794 private:
2795 absl::Cord* cord_;
2796 absl::string_view expected_;
2797 };
2798
2799 template <typename Str>
TestAfterExit(Str)2800 void TestAfterExit(Str) {
2801 const auto expected = Str::value;
2802 // Defined before `cord` to be destroyed after it.
2803 static AfterExitCordTester exit_tester; // NOLINT
2804 static absl::NoDestructor<absl::Cord> cord_leaker(Str{});
2805 // cord_leaker is static, so this reference will remain valid through the end
2806 // of program execution.
2807 static absl::Cord& cord = *cord_leaker;
2808 static bool init_exit_tester = exit_tester.Set(&cord, expected);
2809 (void)init_exit_tester;
2810
2811 EXPECT_EQ(cord, expected);
2812 // Copy the object and test the copy, and the original.
2813 {
2814 absl::Cord copy = cord;
2815 EXPECT_EQ(copy, expected);
2816 }
2817 // The original still works
2818 EXPECT_EQ(cord, expected);
2819
2820 // Try making adding more structure to the tree.
2821 {
2822 absl::Cord copy = cord;
2823 std::string expected_copy(expected);
2824 for (int i = 0; i < 10; ++i) {
2825 copy.Append(cord);
2826 absl::StrAppend(&expected_copy, expected);
2827 EXPECT_EQ(copy, expected_copy);
2828 }
2829 }
2830
2831 // Make sure we are using the right branch during constant evaluation.
2832 EXPECT_EQ(absl::CordTestPeer::IsTree(cord), cord.size() >= 16);
2833
2834 for (int i = 0; i < 10; ++i) {
2835 // Make a few more Cords from the same global rep.
2836 // This tests what happens when the refcount for it gets below 1.
2837 EXPECT_EQ(expected, absl::Cord(Str{}));
2838 }
2839 }
2840
SimpleStrlen(const char * p)2841 constexpr int SimpleStrlen(const char* p) {
2842 return *p ? 1 + SimpleStrlen(p + 1) : 0;
2843 }
2844
2845 struct ShortView {
operator ()ShortView2846 constexpr absl::string_view operator()() const {
2847 return absl::string_view("SSO string", SimpleStrlen("SSO string"));
2848 }
2849 };
2850
2851 struct LongView {
operator ()LongView2852 constexpr absl::string_view operator()() const {
2853 return absl::string_view("String that does not fit SSO.",
2854 SimpleStrlen("String that does not fit SSO."));
2855 }
2856 };
2857
2858
TEST_P(CordTest,AfterExit)2859 TEST_P(CordTest, AfterExit) {
2860 TestAfterExit(absl::strings_internal::MakeStringConstant(ShortView{}));
2861 TestAfterExit(absl::strings_internal::MakeStringConstant(LongView{}));
2862 }
2863
2864 namespace {
2865
2866 // Test helper that generates a populated cord for future manipulation.
2867 //
2868 // By test convention, all generated cords begin with the characters "abcde" at
2869 // the start of the first chunk.
2870 class PopulatedCordFactory {
2871 public:
PopulatedCordFactory(absl::string_view name,absl::Cord (* generator)())2872 constexpr PopulatedCordFactory(absl::string_view name,
2873 absl::Cord (*generator)())
2874 : name_(name), generator_(generator) {}
2875
Name() const2876 absl::string_view Name() const { return name_; }
Generate() const2877 absl::Cord Generate() const { return generator_(); }
2878
2879 private:
2880 absl::string_view name_;
2881 absl::Cord (*generator_)();
2882 };
2883
2884 // clang-format off
2885 // This array is constant-initialized in conformant compilers.
2886 PopulatedCordFactory cord_factories[] = {
__anon350f853b1e02null2887 {"sso", [] { return absl::Cord("abcde"); }},
__anon350f853b1f02null2888 {"flat", [] {
2889 // Too large to live in SSO space, but small enough to be a simple FLAT.
2890 absl::Cord flat(absl::StrCat("abcde", std::string(1000, 'x')));
2891 flat.Flatten();
2892 return flat;
2893 }},
__anon350f853b2002null2894 {"external", [] {
2895 // A cheat: we are using a string literal as the external storage, so a
2896 // no-op releaser is correct here.
2897 return absl::MakeCordFromExternal("abcde External!", []{});
2898 }},
__anon350f853b2202null2899 {"external substring", [] {
2900 // A cheat: we are using a string literal as the external storage, so a
2901 // no-op releaser is correct here.
2902 absl::Cord ext = absl::MakeCordFromExternal("-abcde External!", []{});
2903 return absl::CordTestPeer::MakeSubstring(ext, 1, ext.size() - 1);
2904 }},
__anon350f853b2402null2905 {"substring", [] {
2906 absl::Cord flat(absl::StrCat("-abcde", std::string(1000, 'x')));
2907 flat.Flatten();
2908 return flat.Subcord(1, 998);
2909 }},
__anon350f853b2502null2910 {"fragmented", [] {
2911 std::string fragment = absl::StrCat("abcde", std::string(195, 'x'));
2912 std::vector<std::string> fragments(200, fragment);
2913 absl::Cord cord = absl::MakeFragmentedCord(fragments);
2914 assert(cord.size() == 40000);
2915 return cord;
2916 }},
2917 };
2918 // clang-format on
2919
2920 // Test helper that can mutate a cord, and possibly undo the mutation, for
2921 // testing.
2922 class CordMutator {
2923 public:
CordMutator(absl::string_view name,void (* mutate)(absl::Cord &),void (* undo)(absl::Cord &)=nullptr)2924 constexpr CordMutator(absl::string_view name, void (*mutate)(absl::Cord&),
2925 void (*undo)(absl::Cord&) = nullptr)
2926 : name_(name), mutate_(mutate), undo_(undo) {}
2927
Name() const2928 absl::string_view Name() const { return name_; }
Mutate(absl::Cord & cord) const2929 void Mutate(absl::Cord& cord) const { mutate_(cord); }
CanUndo() const2930 bool CanUndo() const { return undo_ != nullptr; }
Undo(absl::Cord & cord) const2931 void Undo(absl::Cord& cord) const { undo_(cord); }
2932
2933 private:
2934 absl::string_view name_;
2935 void (*mutate_)(absl::Cord&);
2936 void (*undo_)(absl::Cord&);
2937 };
2938
2939 // clang-format off
2940 // This array is constant-initialized in conformant compilers.
2941 CordMutator cord_mutators[] = {
__anon350f853b2602() 2942 {"clear", [](absl::Cord& c) { c.Clear(); }},
__anon350f853b2702() 2943 {"overwrite", [](absl::Cord& c) { c = "overwritten"; }},
2944 {
2945 "append string",
__anon350f853b2802() 2946 [](absl::Cord& c) { c.Append("0123456789"); },
__anon350f853b2902() 2947 [](absl::Cord& c) { c.RemoveSuffix(10); }
2948 },
2949 {
2950 "append cord",
__anon350f853b2a02() 2951 [](absl::Cord& c) {
2952 c.Append(absl::MakeFragmentedCord({"12345", "67890"}));
2953 },
__anon350f853b2b02() 2954 [](absl::Cord& c) { c.RemoveSuffix(10); }
2955 },
2956 {
2957 "append checksummed cord",
__anon350f853b2c02() 2958 [](absl::Cord& c) {
2959 absl::Cord to_append = absl::MakeFragmentedCord({"12345", "67890"});
2960 to_append.SetExpectedChecksum(999);
2961 c.Append(to_append);
2962 },
__anon350f853b2d02() 2963 [](absl::Cord& c) { c.RemoveSuffix(10); }
2964 },
2965 {
2966 "append self",
__anon350f853b2e02() 2967 [](absl::Cord& c) { c.Append(c); },
__anon350f853b2f02() 2968 [](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); }
2969 },
2970 {
2971 "append empty string",
__anon350f853b3002() 2972 [](absl::Cord& c) { c.Append(""); },
__anon350f853b3102() 2973 [](absl::Cord& c) { }
2974 },
2975 {
2976 "append empty cord",
__anon350f853b3202() 2977 [](absl::Cord& c) { c.Append(absl::Cord()); },
__anon350f853b3302() 2978 [](absl::Cord& c) { }
2979 },
2980 {
2981 "append empty checksummed cord",
__anon350f853b3402() 2982 [](absl::Cord& c) {
2983 absl::Cord to_append;
2984 to_append.SetExpectedChecksum(999);
2985 c.Append(to_append);
2986 },
__anon350f853b3502() 2987 [](absl::Cord& c) { }
2988 },
2989 {
2990 "prepend string",
__anon350f853b3602() 2991 [](absl::Cord& c) { c.Prepend("9876543210"); },
__anon350f853b3702() 2992 [](absl::Cord& c) { c.RemovePrefix(10); }
2993 },
2994 {
2995 "prepend cord",
__anon350f853b3802() 2996 [](absl::Cord& c) {
2997 c.Prepend(absl::MakeFragmentedCord({"98765", "43210"}));
2998 },
__anon350f853b3902() 2999 [](absl::Cord& c) { c.RemovePrefix(10); }
3000 },
3001 {
3002 "prepend checksummed cord",
__anon350f853b3a02() 3003 [](absl::Cord& c) {
3004 absl::Cord to_prepend = absl::MakeFragmentedCord({"98765", "43210"});
3005 to_prepend.SetExpectedChecksum(999);
3006 c.Prepend(to_prepend);
3007 },
__anon350f853b3b02() 3008 [](absl::Cord& c) { c.RemovePrefix(10); }
3009 },
3010 {
3011 "prepend empty string",
__anon350f853b3c02() 3012 [](absl::Cord& c) { c.Prepend(""); },
__anon350f853b3d02() 3013 [](absl::Cord& c) { }
3014 },
3015 {
3016 "prepend empty cord",
__anon350f853b3e02() 3017 [](absl::Cord& c) { c.Prepend(absl::Cord()); },
__anon350f853b3f02() 3018 [](absl::Cord& c) { }
3019 },
3020 {
3021 "prepend empty checksummed cord",
__anon350f853b4002() 3022 [](absl::Cord& c) {
3023 absl::Cord to_prepend;
3024 to_prepend.SetExpectedChecksum(999);
3025 c.Prepend(to_prepend);
3026 },
__anon350f853b4102() 3027 [](absl::Cord& c) { }
3028 },
3029 {
3030 "prepend self",
__anon350f853b4202() 3031 [](absl::Cord& c) { c.Prepend(c); },
__anon350f853b4302() 3032 [](absl::Cord& c) { c.RemovePrefix(c.size() / 2); }
3033 },
__anon350f853b4402() 3034 {"remove prefix", [](absl::Cord& c) { c.RemovePrefix(c.size() / 2); }},
__anon350f853b4502() 3035 {"remove suffix", [](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); }},
__anon350f853b4602() 3036 {"remove 0-prefix", [](absl::Cord& c) { c.RemovePrefix(0); }},
__anon350f853b4702() 3037 {"remove 0-suffix", [](absl::Cord& c) { c.RemoveSuffix(0); }},
__anon350f853b4802() 3038 {"subcord", [](absl::Cord& c) { c = c.Subcord(1, c.size() - 2); }},
3039 {
3040 "swap inline",
__anon350f853b4902() 3041 [](absl::Cord& c) {
3042 absl::Cord other("swap");
3043 c.swap(other);
3044 }
3045 },
3046 {
3047 "swap tree",
__anon350f853b4a02() 3048 [](absl::Cord& c) {
3049 absl::Cord other(std::string(10000, 'x'));
3050 c.swap(other);
3051 }
3052 },
3053 };
3054 // clang-format on
3055 } // namespace
3056
TEST_P(CordTest,ExpectedChecksum)3057 TEST_P(CordTest, ExpectedChecksum) {
3058 for (const PopulatedCordFactory& factory : cord_factories) {
3059 SCOPED_TRACE(factory.Name());
3060 for (bool shared : {false, true}) {
3061 SCOPED_TRACE(shared);
3062
3063 absl::Cord shared_cord_source = factory.Generate();
3064 auto make_instance = [=] {
3065 return shared ? shared_cord_source : factory.Generate();
3066 };
3067
3068 const absl::Cord base_value = factory.Generate();
3069 const std::string base_value_as_string(factory.Generate().Flatten());
3070
3071 absl::Cord c1 = make_instance();
3072 EXPECT_FALSE(c1.ExpectedChecksum().has_value());
3073
3074 // Setting an expected checksum works, and retains the cord's bytes
3075 c1.SetExpectedChecksum(12345);
3076 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3077 EXPECT_EQ(c1, base_value);
3078
3079 // Test that setting an expected checksum again doesn't crash or leak
3080 // memory.
3081 c1.SetExpectedChecksum(12345);
3082 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3083 EXPECT_EQ(c1, base_value);
3084
3085 // CRC persists through copies, assignments, and moves:
3086 absl::Cord c1_copy_construct = c1;
3087 EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345);
3088
3089 absl::Cord c1_copy_assign;
3090 c1_copy_assign = c1;
3091 EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345);
3092
3093 absl::Cord c1_move(std::move(c1_copy_assign));
3094 EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345);
3095
3096 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3097
3098 // A CRC Cord compares equal to its non-CRC value.
3099 EXPECT_EQ(c1, make_instance());
3100
3101 for (const CordMutator& mutator : cord_mutators) {
3102 SCOPED_TRACE(mutator.Name());
3103
3104 // Test that mutating a cord removes its stored checksum
3105 absl::Cord c2 = make_instance();
3106 c2.SetExpectedChecksum(24680);
3107
3108 mutator.Mutate(c2);
3109
3110 if (c1 == c2) {
3111 // Not a mutation (for example, appending the empty string).
3112 // Whether the checksum is removed is not defined.
3113 continue;
3114 }
3115
3116 EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
3117
3118 if (mutator.CanUndo()) {
3119 // Undoing an operation should not restore the checksum
3120 mutator.Undo(c2);
3121 EXPECT_EQ(c2, base_value);
3122 EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
3123 }
3124 }
3125
3126 absl::Cord c3 = make_instance();
3127 c3.SetExpectedChecksum(999);
3128 const absl::Cord& cc3 = c3;
3129
3130 // Test that all cord reading operations function in the face of an
3131 // expected checksum.
3132
3133 // Test data precondition
3134 ASSERT_TRUE(cc3.StartsWith("abcde"));
3135
3136 EXPECT_EQ(cc3.size(), base_value_as_string.size());
3137 EXPECT_FALSE(cc3.empty());
3138 EXPECT_EQ(cc3.Compare(base_value), 0);
3139 EXPECT_EQ(cc3.Compare(base_value_as_string), 0);
3140 EXPECT_EQ(cc3.Compare("wxyz"), -1);
3141 EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1);
3142 EXPECT_EQ(cc3.Compare("aaaa"), 1);
3143 EXPECT_EQ(cc3.Compare(absl::Cord("aaaa")), 1);
3144 EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1);
3145 EXPECT_EQ(absl::Cord("aaaa").Compare(cc3), -1);
3146 EXPECT_TRUE(cc3.StartsWith("abcd"));
3147 EXPECT_EQ(std::string(cc3), base_value_as_string);
3148
3149 std::string dest;
3150 absl::CopyCordToString(cc3, &dest);
3151 EXPECT_EQ(dest, base_value_as_string);
3152
3153 bool first_pass = true;
3154 for (absl::string_view chunk : cc3.Chunks()) {
3155 if (first_pass) {
3156 EXPECT_TRUE(absl::StartsWith(chunk, "abcde"));
3157 }
3158 first_pass = false;
3159 }
3160 first_pass = true;
3161 for (char ch : cc3.Chars()) {
3162 if (first_pass) {
3163 EXPECT_EQ(ch, 'a');
3164 }
3165 first_pass = false;
3166 }
3167 EXPECT_TRUE(absl::StartsWith(*cc3.chunk_begin(), "abcde"));
3168 EXPECT_EQ(*cc3.char_begin(), 'a');
3169
3170 auto char_it = cc3.char_begin();
3171 absl::Cord::Advance(&char_it, 2);
3172 EXPECT_EQ(absl::Cord::AdvanceAndRead(&char_it, 2), "cd");
3173 EXPECT_EQ(*char_it, 'e');
3174 char_it = cc3.char_begin();
3175 absl::Cord::Advance(&char_it, 2);
3176 EXPECT_TRUE(absl::StartsWith(absl::Cord::ChunkRemaining(char_it), "cde"));
3177
3178 EXPECT_EQ(cc3[0], 'a');
3179 EXPECT_EQ(cc3[4], 'e');
3180 EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value));
3181 EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value_as_string));
3182 }
3183 }
3184 }
3185
3186 // Test the special cases encountered with an empty checksummed cord.
TEST_P(CordTest,ChecksummedEmptyCord)3187 TEST_P(CordTest, ChecksummedEmptyCord) {
3188 absl::Cord c1;
3189 EXPECT_FALSE(c1.ExpectedChecksum().has_value());
3190
3191 // Setting an expected checksum works.
3192 c1.SetExpectedChecksum(12345);
3193 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3194 EXPECT_EQ(c1, "");
3195 EXPECT_TRUE(c1.empty());
3196
3197 // Test that setting an expected checksum again doesn't crash or leak memory.
3198 c1.SetExpectedChecksum(12345);
3199 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3200 EXPECT_EQ(c1, "");
3201 EXPECT_TRUE(c1.empty());
3202
3203 // CRC persists through copies, assignments, and moves:
3204 absl::Cord c1_copy_construct = c1;
3205 EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345);
3206
3207 absl::Cord c1_copy_assign;
3208 c1_copy_assign = c1;
3209 EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345);
3210
3211 absl::Cord c1_move(std::move(c1_copy_assign));
3212 EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345);
3213
3214 EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
3215
3216 // A CRC Cord compares equal to its non-CRC value.
3217 EXPECT_EQ(c1, absl::Cord());
3218
3219 for (const CordMutator& mutator : cord_mutators) {
3220 SCOPED_TRACE(mutator.Name());
3221
3222 // Exercise mutating an empty checksummed cord to catch crashes and exercise
3223 // memory sanitizers.
3224 absl::Cord c2;
3225 c2.SetExpectedChecksum(24680);
3226 mutator.Mutate(c2);
3227
3228 if (c2.empty()) {
3229 // Not a mutation
3230 continue;
3231 }
3232 EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
3233
3234 if (mutator.CanUndo()) {
3235 mutator.Undo(c2);
3236 }
3237 }
3238
3239 absl::Cord c3;
3240 c3.SetExpectedChecksum(999);
3241 const absl::Cord& cc3 = c3;
3242
3243 // Test that all cord reading operations function in the face of an
3244 // expected checksum.
3245 EXPECT_TRUE(cc3.StartsWith(""));
3246 EXPECT_TRUE(cc3.EndsWith(""));
3247 EXPECT_TRUE(cc3.empty());
3248 EXPECT_EQ(cc3, "");
3249 EXPECT_EQ(cc3, absl::Cord());
3250 EXPECT_EQ(cc3.size(), 0);
3251 EXPECT_EQ(cc3.Compare(absl::Cord()), 0);
3252 EXPECT_EQ(cc3.Compare(c1), 0);
3253 EXPECT_EQ(cc3.Compare(cc3), 0);
3254 EXPECT_EQ(cc3.Compare(""), 0);
3255 EXPECT_EQ(cc3.Compare("wxyz"), -1);
3256 EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1);
3257 EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1);
3258 EXPECT_EQ(std::string(cc3), "");
3259
3260 std::string dest;
3261 absl::CopyCordToString(cc3, &dest);
3262 EXPECT_EQ(dest, "");
3263
3264 for (absl::string_view chunk : cc3.Chunks()) { // NOLINT(unreachable loop)
3265 static_cast<void>(chunk);
3266 GTEST_FAIL() << "no chunks expected";
3267 }
3268 EXPECT_TRUE(cc3.chunk_begin() == cc3.chunk_end());
3269
3270 for (char ch : cc3.Chars()) { // NOLINT(unreachable loop)
3271 static_cast<void>(ch);
3272 GTEST_FAIL() << "no chars expected";
3273 }
3274 EXPECT_TRUE(cc3.char_begin() == cc3.char_end());
3275
3276 EXPECT_EQ(cc3.TryFlat(), "");
3277 EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::Cord()));
3278 EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::string_view()));
3279 }
3280
TEST(CrcCordTest,ChecksummedEmptyCordEstimateMemoryUsage)3281 TEST(CrcCordTest, ChecksummedEmptyCordEstimateMemoryUsage) {
3282 absl::Cord cord;
3283 cord.SetExpectedChecksum(0);
3284 EXPECT_NE(cord.EstimatedMemoryUsage(), 0);
3285 }
3286
TEST(CordThreeWayComparisonTest,CompareCords)3287 TEST(CordThreeWayComparisonTest, CompareCords) {
3288 #ifndef __cpp_impl_three_way_comparison
3289 GTEST_SKIP() << "C++20 three-way <=> comparison not supported";
3290 #else
3291 EXPECT_EQ(absl::Cord("a") <=> absl::Cord("a"), std::strong_ordering::equal);
3292 EXPECT_EQ(absl::Cord("aaaa") <=> absl::Cord("aaab"),
3293 std::strong_ordering::less);
3294 EXPECT_EQ(absl::Cord("baaa") <=> absl::Cord("a"),
3295 std::strong_ordering::greater);
3296 #endif
3297 }
3298
TEST(CordThreeWayComparisonTest,CompareCordsAndStringViews)3299 TEST(CordThreeWayComparisonTest, CompareCordsAndStringViews) {
3300 #ifndef __cpp_impl_three_way_comparison
3301 GTEST_SKIP() << "C++20 three-way <=> comparison not supported";
3302 #else
3303 EXPECT_EQ(absl::string_view("a") <=> absl::Cord("a"),
3304 std::strong_ordering::equal);
3305 EXPECT_EQ(absl::Cord("a") <=> absl::string_view("b"),
3306 std::strong_ordering::less);
3307 EXPECT_EQ(absl::string_view("b") <=> absl::Cord("a"),
3308 std::strong_ordering::greater);
3309 #endif
3310 }
3311
3312 #if defined(GTEST_HAS_DEATH_TEST) && defined(ABSL_INTERNAL_CORD_HAVE_SANITIZER)
3313
3314 // Returns an expected poison / uninitialized death message expression.
MASanDeathExpr()3315 const char* MASanDeathExpr() {
3316 return "(use-after-poison|use-of-uninitialized-value)";
3317 }
3318
TEST(CordSanitizerTest,SanitizesEmptyCord)3319 TEST(CordSanitizerTest, SanitizesEmptyCord) {
3320 absl::Cord cord;
3321 const char* data = cord.Flatten().data();
3322 EXPECT_DEATH(EXPECT_EQ(data[0], 0), MASanDeathExpr());
3323 }
3324
TEST(CordSanitizerTest,SanitizesSmallCord)3325 TEST(CordSanitizerTest, SanitizesSmallCord) {
3326 absl::Cord cord("Hello");
3327 const char* data = cord.Flatten().data();
3328 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3329 }
3330
TEST(CordSanitizerTest,SanitizesCordOnSetSSOValue)3331 TEST(CordSanitizerTest, SanitizesCordOnSetSSOValue) {
3332 absl::Cord cord("String that is too big to be an SSO value");
3333 cord = "Hello";
3334 const char* data = cord.Flatten().data();
3335 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3336 }
3337
TEST(CordSanitizerTest,SanitizesCordOnCopyCtor)3338 TEST(CordSanitizerTest, SanitizesCordOnCopyCtor) {
3339 absl::Cord src("hello");
3340 absl::Cord dst(src);
3341 const char* data = dst.Flatten().data();
3342 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3343 }
3344
TEST(CordSanitizerTest,SanitizesCordOnMoveCtor)3345 TEST(CordSanitizerTest, SanitizesCordOnMoveCtor) {
3346 absl::Cord src("hello");
3347 absl::Cord dst(std::move(src));
3348 const char* data = dst.Flatten().data();
3349 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3350 }
3351
TEST(CordSanitizerTest,SanitizesCordOnAssign)3352 TEST(CordSanitizerTest, SanitizesCordOnAssign) {
3353 absl::Cord src("hello");
3354 absl::Cord dst;
3355 dst = src;
3356 const char* data = dst.Flatten().data();
3357 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3358 }
3359
TEST(CordSanitizerTest,SanitizesCordOnMoveAssign)3360 TEST(CordSanitizerTest, SanitizesCordOnMoveAssign) {
3361 absl::Cord src("hello");
3362 absl::Cord dst;
3363 dst = std::move(src);
3364 const char* data = dst.Flatten().data();
3365 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3366 }
3367
TEST(CordSanitizerTest,SanitizesCordOnSsoAssign)3368 TEST(CordSanitizerTest, SanitizesCordOnSsoAssign) {
3369 absl::Cord src("hello");
3370 absl::Cord dst("String that is too big to be an SSO value");
3371 dst = src;
3372 const char* data = dst.Flatten().data();
3373 EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
3374 }
3375
3376 #endif // GTEST_HAS_DEATH_TEST && ABSL_INTERNAL_CORD_HAVE_SANITIZER
3377