1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/charconv.h"
16
17 #include <algorithm>
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <limits>
22 #include <system_error> // NOLINT(build/c++11)
23
24 #include "absl/base/casts.h"
25 #include "absl/base/config.h"
26 #include "absl/base/nullability.h"
27 #include "absl/numeric/bits.h"
28 #include "absl/numeric/int128.h"
29 #include "absl/strings/internal/charconv_bigint.h"
30 #include "absl/strings/internal/charconv_parse.h"
31
32 // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
33 // point numbers have the same endianness in memory as a bitfield struct
34 // containing the corresponding parts.
35 //
36 // When set, we replace calls to ldexp() with manual bit packing, which is
37 // faster and is unaffected by floating point environment.
38 #ifdef ABSL_BIT_PACK_FLOATS
39 #error ABSL_BIT_PACK_FLOATS cannot be directly set
40 #elif defined(__x86_64__) || defined(_M_X64)
41 #define ABSL_BIT_PACK_FLOATS 1
42 #endif
43
44 // A note about subnormals:
45 //
46 // The code below talks about "normals" and "subnormals". A normal IEEE float
47 // has a fixed-width mantissa and power of two exponent. For example, a normal
48 // `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
49 // stored in the representation. The implicit bit buys an extra bit of
50 // resolution in the datatype.
51 //
52 // The downside of this scheme is that there is a large gap between DBL_MIN and
53 // zero. (Large, at least, relative to the different between DBL_MIN and the
54 // next representable number). This gap is softened by the "subnormal" numbers,
55 // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
56 // bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
57 // is represented as a subnormal with an all-bits-zero mantissa.)
58 //
59 // The code below, in calculations, represents the mantissa as a uint64_t. The
60 // end result normally has the 53rd bit set. It represents subnormals by using
61 // narrower mantissas.
62
63 namespace absl {
64 ABSL_NAMESPACE_BEGIN
65 namespace {
66
67 template <typename FloatType>
68 struct FloatTraits;
69
70 template <>
71 struct FloatTraits<double> {
72 using mantissa_t = uint64_t;
73
74 // The number of bits in the given float type.
75 static constexpr int kTargetBits = 64;
76
77 // The number of exponent bits in the given float type.
78 static constexpr int kTargetExponentBits = 11;
79
80 // The number of mantissa bits in the given float type. This includes the
81 // implied high bit.
82 static constexpr int kTargetMantissaBits = 53;
83
84 // The largest supported IEEE exponent, in our integral mantissa
85 // representation.
86 //
87 // If `m` is the largest possible int kTargetMantissaBits bits wide, then
88 // m * 2**kMaxExponent is exactly equal to DBL_MAX.
89 static constexpr int kMaxExponent = 971;
90
91 // The smallest supported IEEE normal exponent, in our integral mantissa
92 // representation.
93 //
94 // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
95 // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
96 static constexpr int kMinNormalExponent = -1074;
97
98 // The IEEE exponent bias. It equals ((1 << (kTargetExponentBits - 1)) - 1).
99 static constexpr int kExponentBias = 1023;
100
101 // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment. It equals (63 - 1 -
102 // kTargetMantissaBits).
103 static constexpr int kEiselLemireShift = 9;
104
105 // The Eisel-Lemire high64_mask. It equals ((1 << kEiselLemireShift) - 1).
106 static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
107
108 // The smallest negative integer N (smallest negative means furthest from
109 // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
110 // positive. Parsing a smaller (more negative) N will produce zero.
111 //
112 // Adjusting the decimal point and exponent, without adjusting the value,
113 // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
114 //
115 // 9999999999999999999, with 19 nines but no decimal point, is the largest
116 // "repeated nines" integer that fits in a uint64_t.
117 static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
118
119 // The smallest positive integer N such that parsing 1eN produces infinity.
120 // Parsing a smaller N will produce something finite.
121 static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
122
MakeNanabsl::__anone834fbc80111::FloatTraits123 static double MakeNan(absl::Nonnull<const char*> tagp) {
124 #if ABSL_HAVE_BUILTIN(__builtin_nan)
125 // Use __builtin_nan() if available since it has a fix for
126 // https://bugs.llvm.org/show_bug.cgi?id=37778
127 // std::nan may use the glibc implementation.
128 return __builtin_nan(tagp);
129 #else
130 // Support nan no matter which namespace it's in. Some platforms
131 // incorrectly don't put it in namespace std.
132 using namespace std; // NOLINT
133 return nan(tagp);
134 #endif
135 }
136
137 // Builds a nonzero floating point number out of the provided parts.
138 //
139 // This is intended to do the same operation as ldexp(mantissa, exponent),
140 // but using purely integer math, to avoid -ffastmath and floating
141 // point environment issues. Using type punning is also faster. We fall back
142 // to ldexp on a per-platform basis for portability.
143 //
144 // `exponent` must be between kMinNormalExponent and kMaxExponent.
145 //
146 // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
147 // a normal value is made, or it must be less narrow than that, in which case
148 // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
149 // made.
Makeabsl::__anone834fbc80111::FloatTraits150 static double Make(mantissa_t mantissa, int exponent, bool sign) {
151 #ifndef ABSL_BIT_PACK_FLOATS
152 // Support ldexp no matter which namespace it's in. Some platforms
153 // incorrectly don't put it in namespace std.
154 using namespace std; // NOLINT
155 return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
156 #else
157 constexpr uint64_t kMantissaMask =
158 (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
159 uint64_t dbl = static_cast<uint64_t>(sign) << 63;
160 if (mantissa > kMantissaMask) {
161 // Normal value.
162 // Adjust by 1023 for the exponent representation bias, and an additional
163 // 52 due to the implied decimal point in the IEEE mantissa
164 // representation.
165 dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
166 << 52;
167 mantissa &= kMantissaMask;
168 } else {
169 // subnormal value
170 assert(exponent == kMinNormalExponent);
171 }
172 dbl += mantissa;
173 return absl::bit_cast<double>(dbl);
174 #endif // ABSL_BIT_PACK_FLOATS
175 }
176 };
177
178 // Specialization of floating point traits for the `float` type. See the
179 // FloatTraits<double> specialization above for meaning of each of the following
180 // members and methods.
181 template <>
182 struct FloatTraits<float> {
183 using mantissa_t = uint32_t;
184
185 static constexpr int kTargetBits = 32;
186 static constexpr int kTargetExponentBits = 8;
187 static constexpr int kTargetMantissaBits = 24;
188 static constexpr int kMaxExponent = 104;
189 static constexpr int kMinNormalExponent = -149;
190 static constexpr int kExponentBias = 127;
191 static constexpr int kEiselLemireShift = 38;
192 static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
193 static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
194 static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
195
MakeNanabsl::__anone834fbc80111::FloatTraits196 static float MakeNan(absl::Nonnull<const char*> tagp) {
197 #if ABSL_HAVE_BUILTIN(__builtin_nanf)
198 // Use __builtin_nanf() if available since it has a fix for
199 // https://bugs.llvm.org/show_bug.cgi?id=37778
200 // std::nanf may use the glibc implementation.
201 return __builtin_nanf(tagp);
202 #else
203 // Support nanf no matter which namespace it's in. Some platforms
204 // incorrectly don't put it in namespace std.
205 using namespace std; // NOLINT
206 return std::nanf(tagp);
207 #endif
208 }
209
Makeabsl::__anone834fbc80111::FloatTraits210 static float Make(mantissa_t mantissa, int exponent, bool sign) {
211 #ifndef ABSL_BIT_PACK_FLOATS
212 // Support ldexpf no matter which namespace it's in. Some platforms
213 // incorrectly don't put it in namespace std.
214 using namespace std; // NOLINT
215 return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
216 #else
217 constexpr uint32_t kMantissaMask =
218 (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
219 uint32_t flt = static_cast<uint32_t>(sign) << 31;
220 if (mantissa > kMantissaMask) {
221 // Normal value.
222 // Adjust by 127 for the exponent representation bias, and an additional
223 // 23 due to the implied decimal point in the IEEE mantissa
224 // representation.
225 flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
226 << 23;
227 mantissa &= kMantissaMask;
228 } else {
229 // subnormal value
230 assert(exponent == kMinNormalExponent);
231 }
232 flt += mantissa;
233 return absl::bit_cast<float>(flt);
234 #endif // ABSL_BIT_PACK_FLOATS
235 }
236 };
237
238 // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
239 // and a power of 2. The two helper functions Power10Mantissa(n) and
240 // Power10Exponent(n) perform this task. Together, these represent a hand-
241 // rolled floating point value which is equal to or just less than 10**n.
242 //
243 // The return values satisfy two range guarantees:
244 //
245 // Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
246 // < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
247 //
248 // 2**63 <= Power10Mantissa(n) < 2**64.
249 //
250 // See the "Table of powers of 10" comment below for a "1e60" example.
251 //
252 // Lookups into the power-of-10 table must first check the Power10Overflow() and
253 // Power10Underflow() functions, to avoid out-of-bounds table access.
254 //
255 // Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
256 // indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
257 extern const uint64_t kPower10MantissaHighTable[]; // High 64 of 128 bits.
258 extern const uint64_t kPower10MantissaLowTable[]; // Low 64 of 128 bits.
259
260 // The smallest (inclusive) allowed value for use with the Power10Mantissa()
261 // and Power10Exponent() functions below. (If a smaller exponent is needed in
262 // calculations, the end result is guaranteed to underflow.)
263 constexpr int kPower10TableMinInclusive = -342;
264
265 // The largest (exclusive) allowed value for use with the Power10Mantissa() and
266 // Power10Exponent() functions below. (If a larger-or-equal exponent is needed
267 // in calculations, the end result is guaranteed to overflow.)
268 constexpr int kPower10TableMaxExclusive = 309;
269
Power10Mantissa(int n)270 uint64_t Power10Mantissa(int n) {
271 return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
272 }
273
Power10Exponent(int n)274 int Power10Exponent(int n) {
275 // The 217706 etc magic numbers encode the results as a formula instead of a
276 // table. Their equivalence (over the kPower10TableMinInclusive ..
277 // kPower10TableMaxExclusive range) is confirmed by
278 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
279 return (217706 * n >> 16) - 63;
280 }
281
282 // Returns true if n is large enough that 10**n always results in an IEEE
283 // overflow.
Power10Overflow(int n)284 bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
285
286 // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
287 // always results in an IEEE underflow.
Power10Underflow(int n)288 bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
289
290 // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
291 // to 10**n numerically. Put another way, this returns true if there is no
292 // truncation error in Power10Mantissa(n).
Power10Exact(int n)293 bool Power10Exact(int n) { return n >= 0 && n <= 27; }
294
295 // Sentinel exponent values for representing numbers too large or too close to
296 // zero to represent in a double.
297 constexpr int kOverflow = 99999;
298 constexpr int kUnderflow = -99999;
299
300 // Struct representing the calculated conversion result of a positive (nonzero)
301 // floating point number.
302 //
303 // The calculated number is mantissa * 2**exponent (mantissa is treated as an
304 // integer.) `mantissa` is chosen to be the correct width for the IEEE float
305 // representation being calculated. (`mantissa` will always have the same bit
306 // width for normal values, and narrower bit widths for subnormals.)
307 //
308 // If the result of conversion was an underflow or overflow, exponent is set
309 // to kUnderflow or kOverflow.
310 struct CalculatedFloat {
311 uint64_t mantissa = 0;
312 int exponent = 0;
313 };
314
315 // Returns the bit width of the given uint128. (Equivalently, returns 128
316 // minus the number of leading zero bits.)
BitWidth(uint128 value)317 int BitWidth(uint128 value) {
318 if (Uint128High64(value) == 0) {
319 // This static_cast is only needed when using a std::bit_width()
320 // implementation that does not have the fix for LWG 3656 applied.
321 return static_cast<int>(bit_width(Uint128Low64(value)));
322 }
323 return 128 - countl_zero(Uint128High64(value));
324 }
325
326 // Calculates how far to the right a mantissa needs to be shifted to create a
327 // properly adjusted mantissa for an IEEE floating point number.
328 //
329 // `mantissa_width` is the bit width of the mantissa to be shifted, and
330 // `binary_exponent` is the exponent of the number before the shift.
331 //
332 // This accounts for subnormal values, and will return a larger-than-normal
333 // shift if binary_exponent would otherwise be too low.
334 template <typename FloatType>
NormalizedShiftSize(int mantissa_width,int binary_exponent)335 int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
336 const int normal_shift =
337 mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
338 const int minimum_shift =
339 FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
340 return std::max(normal_shift, minimum_shift);
341 }
342
343 // Right shifts a uint128 so that it has the requested bit width. (The
344 // resulting value will have 128 - bit_width leading zeroes.) The initial
345 // `value` must be wider than the requested bit width.
346 //
347 // Returns the number of bits shifted.
TruncateToBitWidth(int bit_width,absl::Nonnull<uint128 * > value)348 int TruncateToBitWidth(int bit_width, absl::Nonnull<uint128*> value) {
349 const int current_bit_width = BitWidth(*value);
350 const int shift = current_bit_width - bit_width;
351 *value >>= shift;
352 return shift;
353 }
354
355 // Checks if the given ParsedFloat represents one of the edge cases that are
356 // not dependent on number base: zero, infinity, or NaN. If so, sets *value
357 // the appropriate double, and returns true.
358 template <typename FloatType>
HandleEdgeCase(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value)359 bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
360 absl::Nonnull<FloatType*> value) {
361 if (input.type == strings_internal::FloatType::kNan) {
362 // A bug in both clang < 7 and gcc would cause the compiler to optimize
363 // away the buffer we are building below. Declaring the buffer volatile
364 // avoids the issue, and has no measurable performance impact in
365 // microbenchmarks.
366 //
367 // https://bugs.llvm.org/show_bug.cgi?id=37778
368 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
369 constexpr ptrdiff_t kNanBufferSize = 128;
370 #if (defined(__GNUC__) && !defined(__clang__)) || \
371 (defined(__clang__) && __clang_major__ < 7)
372 volatile char n_char_sequence[kNanBufferSize];
373 #else
374 char n_char_sequence[kNanBufferSize];
375 #endif
376 if (input.subrange_begin == nullptr) {
377 n_char_sequence[0] = '\0';
378 } else {
379 ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
380 nan_size = std::min(nan_size, kNanBufferSize - 1);
381 std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
382 n_char_sequence[nan_size] = '\0';
383 }
384 char* nan_argument = const_cast<char*>(n_char_sequence);
385 *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
386 : FloatTraits<FloatType>::MakeNan(nan_argument);
387 return true;
388 }
389 if (input.type == strings_internal::FloatType::kInfinity) {
390 *value = negative ? -std::numeric_limits<FloatType>::infinity()
391 : std::numeric_limits<FloatType>::infinity();
392 return true;
393 }
394 if (input.mantissa == 0) {
395 *value = negative ? -0.0 : 0.0;
396 return true;
397 }
398 return false;
399 }
400
401 // Given a CalculatedFloat result of a from_chars conversion, generate the
402 // correct output values.
403 //
404 // CalculatedFloat can represent an underflow or overflow, in which case the
405 // error code in *result is set. Otherwise, the calculated floating point
406 // number is stored in *value.
407 template <typename FloatType>
EncodeResult(const CalculatedFloat & calculated,bool negative,absl::Nonnull<absl::from_chars_result * > result,absl::Nonnull<FloatType * > value)408 void EncodeResult(const CalculatedFloat& calculated, bool negative,
409 absl::Nonnull<absl::from_chars_result*> result,
410 absl::Nonnull<FloatType*> value) {
411 if (calculated.exponent == kOverflow) {
412 result->ec = std::errc::result_out_of_range;
413 *value = negative ? -std::numeric_limits<FloatType>::max()
414 : std::numeric_limits<FloatType>::max();
415 return;
416 } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
417 result->ec = std::errc::result_out_of_range;
418 *value = negative ? -0.0 : 0.0;
419 return;
420 }
421 *value = FloatTraits<FloatType>::Make(
422 static_cast<typename FloatTraits<FloatType>::mantissa_t>(
423 calculated.mantissa),
424 calculated.exponent, negative);
425 }
426
427 // Returns the given uint128 shifted to the right by `shift` bits, and rounds
428 // the remaining bits using round_to_nearest logic. The value is returned as a
429 // uint64_t, since this is the type used by this library for storing calculated
430 // floating point mantissas.
431 //
432 // It is expected that the width of the input value shifted by `shift` will
433 // be the correct bit-width for the target mantissa, which is strictly narrower
434 // than a uint64_t.
435 //
436 // If `input_exact` is false, then a nonzero error epsilon is assumed. For
437 // rounding purposes, the true value being rounded is strictly greater than the
438 // input value. The error may represent a single lost carry bit.
439 //
440 // When input_exact, shifted bits of the form 1000000... represent a tie, which
441 // is broken by rounding to even -- the rounding direction is chosen so the low
442 // bit of the returned value is 0.
443 //
444 // When !input_exact, shifted bits of the form 10000000... represent a value
445 // strictly greater than one half (due to the error epsilon), and so ties are
446 // always broken by rounding up.
447 //
448 // When !input_exact, shifted bits of the form 01111111... are uncertain;
449 // the true value may or may not be greater than 10000000..., due to the
450 // possible lost carry bit. The correct rounding direction is unknown. In this
451 // case, the result is rounded down, and `output_exact` is set to false.
452 //
453 // Zero and negative values of `shift` are accepted, in which case the word is
454 // shifted left, as necessary.
ShiftRightAndRound(uint128 value,int shift,bool input_exact,absl::Nonnull<bool * > output_exact)455 uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
456 absl::Nonnull<bool*> output_exact) {
457 if (shift <= 0) {
458 *output_exact = input_exact;
459 return static_cast<uint64_t>(value << -shift);
460 }
461 if (shift >= 128) {
462 // Exponent is so small that we are shifting away all significant bits.
463 // Answer will not be representable, even as a subnormal, so return a zero
464 // mantissa (which represents underflow).
465 *output_exact = true;
466 return 0;
467 }
468
469 *output_exact = true;
470 const uint128 shift_mask = (uint128(1) << shift) - 1;
471 const uint128 halfway_point = uint128(1) << (shift - 1);
472
473 const uint128 shifted_bits = value & shift_mask;
474 value >>= shift;
475 if (shifted_bits > halfway_point) {
476 // Shifted bits greater than 10000... require rounding up.
477 return static_cast<uint64_t>(value + 1);
478 }
479 if (shifted_bits == halfway_point) {
480 // In exact mode, shifted bits of 10000... mean we're exactly halfway
481 // between two numbers, and we must round to even. So only round up if
482 // the low bit of `value` is set.
483 //
484 // In inexact mode, the nonzero error means the actual value is greater
485 // than the halfway point and we must always round up.
486 if ((value & 1) == 1 || !input_exact) {
487 ++value;
488 }
489 return static_cast<uint64_t>(value);
490 }
491 if (!input_exact && shifted_bits == halfway_point - 1) {
492 // Rounding direction is unclear, due to error.
493 *output_exact = false;
494 }
495 // Otherwise, round down.
496 return static_cast<uint64_t>(value);
497 }
498
499 // Checks if a floating point guess needs to be rounded up, using high precision
500 // math.
501 //
502 // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
503 // number represented by `parsed_decimal`.
504 //
505 // The exact number represented by `parsed_decimal` must lie between the two
506 // numbers:
507 // A = `guess_mantissa * 2**guess_exponent`
508 // B = `(guess_mantissa + 1) * 2**guess_exponent`
509 //
510 // This function returns false if `A` is the better guess, and true if `B` is
511 // the better guess, with rounding ties broken by rounding to even.
MustRoundUp(uint64_t guess_mantissa,int guess_exponent,const strings_internal::ParsedFloat & parsed_decimal)512 bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
513 const strings_internal::ParsedFloat& parsed_decimal) {
514 // 768 is the number of digits needed in the worst case. We could determine a
515 // better limit dynamically based on the value of parsed_decimal.exponent.
516 // This would optimize pathological input cases only. (Sane inputs won't have
517 // hundreds of digits of mantissa.)
518 absl::strings_internal::BigUnsigned<84> exact_mantissa;
519 int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
520
521 // Adjust the `guess` arguments to be halfway between A and B.
522 guess_mantissa = guess_mantissa * 2 + 1;
523 guess_exponent -= 1;
524
525 // In our comparison:
526 // lhs = exact = exact_mantissa * 10**exact_exponent
527 // = exact_mantissa * 5**exact_exponent * 2**exact_exponent
528 // rhs = guess = guess_mantissa * 2**guess_exponent
529 //
530 // Because we are doing integer math, we can't directly deal with negative
531 // exponents. We instead move these to the other side of the inequality.
532 absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
533 int comparison;
534 if (exact_exponent >= 0) {
535 lhs.MultiplyByFiveToTheNth(exact_exponent);
536 absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
537 // There are powers of 2 on both sides of the inequality; reduce this to
538 // a single bit-shift.
539 if (exact_exponent > guess_exponent) {
540 lhs.ShiftLeft(exact_exponent - guess_exponent);
541 } else {
542 rhs.ShiftLeft(guess_exponent - exact_exponent);
543 }
544 comparison = Compare(lhs, rhs);
545 } else {
546 // Move the power of 5 to the other side of the equation, giving us:
547 // lhs = exact_mantissa * 2**exact_exponent
548 // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
549 absl::strings_internal::BigUnsigned<84> rhs =
550 absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
551 rhs.MultiplyBy(guess_mantissa);
552 if (exact_exponent > guess_exponent) {
553 lhs.ShiftLeft(exact_exponent - guess_exponent);
554 } else {
555 rhs.ShiftLeft(guess_exponent - exact_exponent);
556 }
557 comparison = Compare(lhs, rhs);
558 }
559 if (comparison < 0) {
560 return false;
561 } else if (comparison > 0) {
562 return true;
563 } else {
564 // When lhs == rhs, the decimal input is exactly between A and B.
565 // Round towards even -- round up only if the low bit of the initial
566 // `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
567 // the beginning of this function, so test the 2nd bit here.
568 return (guess_mantissa & 2) == 2;
569 }
570 }
571
572 // Constructs a CalculatedFloat from a given mantissa and exponent, but
573 // with the following normalizations applied:
574 //
575 // If rounding has caused mantissa to increase just past the allowed bit
576 // width, shift and adjust exponent.
577 //
578 // If exponent is too high, sets kOverflow.
579 //
580 // If mantissa is zero (representing a non-zero value not representable, even
581 // as a subnormal), sets kUnderflow.
582 template <typename FloatType>
CalculatedFloatFromRawValues(uint64_t mantissa,int exponent)583 CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
584 CalculatedFloat result;
585 if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
586 mantissa >>= 1;
587 exponent += 1;
588 }
589 if (exponent > FloatTraits<FloatType>::kMaxExponent) {
590 result.exponent = kOverflow;
591 } else if (mantissa == 0) {
592 result.exponent = kUnderflow;
593 } else {
594 result.exponent = exponent;
595 result.mantissa = mantissa;
596 }
597 return result;
598 }
599
600 template <typename FloatType>
CalculateFromParsedHexadecimal(const strings_internal::ParsedFloat & parsed_hex)601 CalculatedFloat CalculateFromParsedHexadecimal(
602 const strings_internal::ParsedFloat& parsed_hex) {
603 uint64_t mantissa = parsed_hex.mantissa;
604 int exponent = parsed_hex.exponent;
605 // This static_cast is only needed when using a std::bit_width()
606 // implementation that does not have the fix for LWG 3656 applied.
607 int mantissa_width = static_cast<int>(bit_width(mantissa));
608 const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
609 bool result_exact;
610 exponent += shift;
611 mantissa = ShiftRightAndRound(mantissa, shift,
612 /* input exact= */ true, &result_exact);
613 // ParseFloat handles rounding in the hexadecimal case, so we don't have to
614 // check `result_exact` here.
615 return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
616 }
617
618 template <typename FloatType>
CalculateFromParsedDecimal(const strings_internal::ParsedFloat & parsed_decimal)619 CalculatedFloat CalculateFromParsedDecimal(
620 const strings_internal::ParsedFloat& parsed_decimal) {
621 CalculatedFloat result;
622
623 // Large or small enough decimal exponents will always result in overflow
624 // or underflow.
625 if (Power10Underflow(parsed_decimal.exponent)) {
626 result.exponent = kUnderflow;
627 return result;
628 } else if (Power10Overflow(parsed_decimal.exponent)) {
629 result.exponent = kOverflow;
630 return result;
631 }
632
633 // Otherwise convert our power of 10 into a power of 2 times an integer
634 // mantissa, and multiply this by our parsed decimal mantissa.
635 uint128 wide_binary_mantissa = parsed_decimal.mantissa;
636 wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
637 int binary_exponent = Power10Exponent(parsed_decimal.exponent);
638
639 // Discard bits that are inaccurate due to truncation error. The magic
640 // `mantissa_width` constants below are justified in
641 // https://abseil.io/about/design/charconv. They represent the number of bits
642 // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
643 // propagation.
644 bool mantissa_exact;
645 int mantissa_width;
646 if (parsed_decimal.subrange_begin) {
647 // Truncated mantissa
648 mantissa_width = 58;
649 mantissa_exact = false;
650 binary_exponent +=
651 TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
652 } else if (!Power10Exact(parsed_decimal.exponent)) {
653 // Exact mantissa, truncated power of ten
654 mantissa_width = 63;
655 mantissa_exact = false;
656 binary_exponent +=
657 TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
658 } else {
659 // Product is exact
660 mantissa_width = BitWidth(wide_binary_mantissa);
661 mantissa_exact = true;
662 }
663
664 // Shift into an FloatType-sized mantissa, and round to nearest.
665 const int shift =
666 NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
667 bool result_exact;
668 binary_exponent += shift;
669 uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
670 mantissa_exact, &result_exact);
671 if (!result_exact) {
672 // We could not determine the rounding direction using int128 math. Use
673 // full resolution math instead.
674 if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
675 binary_mantissa += 1;
676 }
677 }
678
679 return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
680 binary_exponent);
681 }
682
683 // As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
684 // primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
685 // not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
686 // the combined approach (falling back to an alternative implementation when
687 // this function returns false) is both fast and correct.
688 template <typename FloatType>
EiselLemire(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value,absl::Nonnull<std::errc * > ec)689 bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
690 absl::Nonnull<FloatType*> value,
691 absl::Nonnull<std::errc*> ec) {
692 uint64_t man = input.mantissa;
693 int exp10 = input.exponent;
694 if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
695 *value = negative ? -0.0 : 0.0;
696 *ec = std::errc::result_out_of_range;
697 return true;
698 } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
699 // Return max (a finite value) consistent with from_chars and DR 3081. For
700 // SimpleAtod and SimpleAtof, post-processing will return infinity.
701 *value = negative ? -std::numeric_limits<FloatType>::max()
702 : std::numeric_limits<FloatType>::max();
703 *ec = std::errc::result_out_of_range;
704 return true;
705 }
706
707 // Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
708 // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
709 static_assert(
710 FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
711 kPower10TableMinInclusive,
712 "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
713 static_assert(
714 FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
715 kPower10TableMaxExclusive,
716 "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
717
718 // The terse (+) comments in this function body refer to sections of the
719 // https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
720 //
721 // That blog post discusses double precision (11 exponent bits with a -1023
722 // bias, 52 mantissa bits), but the same approach applies to single precision
723 // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
724 // computation here happens with 64-bit values (e.g. man) or 128-bit values
725 // (e.g. x) before finally converting to 64- or 32-bit floating point.
726 //
727 // See also "Number Parsing at a Gigabyte per Second, Software: Practice and
728 // Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
729
730 // (+) Normalization.
731 int clz = countl_zero(man);
732 man <<= static_cast<unsigned int>(clz);
733 // The 217706 etc magic numbers are from the Power10Exponent function.
734 uint64_t ret_exp2 =
735 static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
736 FloatTraits<FloatType>::kExponentBias - clz);
737
738 // (+) Multiplication.
739 uint128 x = static_cast<uint128>(man) *
740 static_cast<uint128>(
741 kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
742
743 // (+) Wider Approximation.
744 static constexpr uint64_t high64_mask =
745 FloatTraits<FloatType>::kEiselLemireMask;
746 if (((Uint128High64(x) & high64_mask) == high64_mask) &&
747 (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
748 uint128 y =
749 static_cast<uint128>(man) *
750 static_cast<uint128>(
751 kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
752 x += Uint128High64(y);
753 // For example, parsing "4503599627370497.5" will take the if-true
754 // branch here (for double precision), since:
755 // - x = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
756 // - y = 0x8000000000000BFF_7FFFFFFFFFFFF400
757 // - man = 0xA000000000000F00
758 // Likewise, when parsing "0.0625" for single precision:
759 // - x = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
760 // - y = 0x813FFFFFFFFFFFFF_8A00000000000000
761 // - man = 0x9C40000000000000
762 if (((Uint128High64(x) & high64_mask) == high64_mask) &&
763 ((Uint128Low64(x) + 1) == 0) &&
764 (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
765 return false;
766 }
767 }
768
769 // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
770 uint64_t msb = Uint128High64(x) >> 63;
771 uint64_t ret_man =
772 Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
773 ret_exp2 -= 1 ^ msb;
774
775 // (+) Half-way Ambiguity.
776 //
777 // For example, parsing "1e+23" will take the if-true branch here (for double
778 // precision), since:
779 // - x = 0x54B40B1F852BDA00_0000000000000000
780 // - ret_man = 0x002A5A058FC295ED
781 // Likewise, when parsing "20040229.0" for single precision:
782 // - x = 0x4C72894000000000_0000000000000000
783 // - ret_man = 0x000000000131CA25
784 if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
785 ((ret_man & 3) == 1)) {
786 return false;
787 }
788
789 // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
790 ret_man += ret_man & 1; // Line From54a.
791 ret_man >>= 1; // Line From54b.
792 // Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
793 // bits after the right shift by 1 at line From54b), so adjust for that.
794 //
795 // For example, parsing "9223372036854775807" will take the if-true branch
796 // here (for double precision), since:
797 // - ret_man = 0x0020000000000000 = (1 << 53)
798 // Likewise, when parsing "2147483647.0" for single precision:
799 // - ret_man = 0x0000000001000000 = (1 << 24)
800 if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
801 ret_exp2 += 1;
802 // Conceptually, we need a "ret_man >>= 1" in this if-block to balance
803 // incrementing ret_exp2 in the line immediately above. However, we only
804 // get here when line From54a overflowed (after adding a 1), so ret_man
805 // here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
806 // remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
807 // low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
808 //
809 // We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
810 // rarely taken) and technically 'more correct', so that mutation tests
811 // that would otherwise modify or omit that "ret_man >>= 1" don't complain
812 // that such code mutations have no observable effect.
813 }
814
815 // ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
816 // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
817 // above means that we're in Inf/NaN space.
818 //
819 // The if block is equivalent to (but has fewer branches than):
820 // if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
821 //
822 // For example, parsing "4.9406564584124654e-324" will take the if-true
823 // branch here, since ret_exp2 = -51.
824 static constexpr uint64_t max_exp2 =
825 (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
826 if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
827 return false;
828 }
829
830 #ifndef ABSL_BIT_PACK_FLOATS
831 if (FloatTraits<FloatType>::kTargetBits == 64) {
832 *value = FloatTraits<FloatType>::Make(
833 (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
834 static_cast<int>(ret_exp2) - 1023 - 52, negative);
835 return true;
836 } else if (FloatTraits<FloatType>::kTargetBits == 32) {
837 *value = FloatTraits<FloatType>::Make(
838 (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
839 static_cast<int>(ret_exp2) - 127 - 23, negative);
840 return true;
841 }
842 #else
843 if (FloatTraits<FloatType>::kTargetBits == 64) {
844 uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
845 if (negative) {
846 ret_bits |= 0x8000000000000000u;
847 }
848 *value = absl::bit_cast<double>(ret_bits);
849 return true;
850 } else if (FloatTraits<FloatType>::kTargetBits == 32) {
851 uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
852 (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
853 if (negative) {
854 ret_bits |= 0x80000000u;
855 }
856 *value = absl::bit_cast<float>(ret_bits);
857 return true;
858 }
859 #endif // ABSL_BIT_PACK_FLOATS
860 return false;
861 }
862
863 template <typename FloatType>
FromCharsImpl(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,FloatType & value,chars_format fmt_flags)864 from_chars_result FromCharsImpl(absl::Nonnull<const char*> first,
865 absl::Nonnull<const char*> last,
866 FloatType& value, chars_format fmt_flags) {
867 from_chars_result result;
868 result.ptr = first; // overwritten on successful parse
869 result.ec = std::errc();
870
871 bool negative = false;
872 if (first != last && *first == '-') {
873 ++first;
874 negative = true;
875 }
876 // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
877 // to parse a hexadecimal float.
878 if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
879 *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
880 const char* hex_first = first + 2;
881 strings_internal::ParsedFloat hex_parse =
882 strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
883 if (hex_parse.end == nullptr ||
884 hex_parse.type != strings_internal::FloatType::kNumber) {
885 // Either we failed to parse a hex float after the "0x", or we read
886 // "0xinf" or "0xnan" which we don't want to match.
887 //
888 // However, a string that begins with "0x" also begins with "0", which
889 // is normally a valid match for the number zero. So we want these
890 // strings to match zero unless fmt_flags is `scientific`. (This flag
891 // means an exponent is required, which the string "0" does not have.)
892 if (fmt_flags == chars_format::scientific) {
893 result.ec = std::errc::invalid_argument;
894 } else {
895 result.ptr = first + 1;
896 value = negative ? -0.0 : 0.0;
897 }
898 return result;
899 }
900 // We matched a value.
901 result.ptr = hex_parse.end;
902 if (HandleEdgeCase(hex_parse, negative, &value)) {
903 return result;
904 }
905 CalculatedFloat calculated =
906 CalculateFromParsedHexadecimal<FloatType>(hex_parse);
907 EncodeResult(calculated, negative, &result, &value);
908 return result;
909 }
910 // Otherwise, we choose the number base based on the flags.
911 if ((fmt_flags & chars_format::hex) == chars_format::hex) {
912 strings_internal::ParsedFloat hex_parse =
913 strings_internal::ParseFloat<16>(first, last, fmt_flags);
914 if (hex_parse.end == nullptr) {
915 result.ec = std::errc::invalid_argument;
916 return result;
917 }
918 result.ptr = hex_parse.end;
919 if (HandleEdgeCase(hex_parse, negative, &value)) {
920 return result;
921 }
922 CalculatedFloat calculated =
923 CalculateFromParsedHexadecimal<FloatType>(hex_parse);
924 EncodeResult(calculated, negative, &result, &value);
925 return result;
926 } else {
927 strings_internal::ParsedFloat decimal_parse =
928 strings_internal::ParseFloat<10>(first, last, fmt_flags);
929 if (decimal_parse.end == nullptr) {
930 result.ec = std::errc::invalid_argument;
931 return result;
932 }
933 result.ptr = decimal_parse.end;
934 if (HandleEdgeCase(decimal_parse, negative, &value)) {
935 return result;
936 }
937 // A nullptr subrange_begin means that the decimal_parse.mantissa is exact
938 // (not truncated), a precondition of the Eisel-Lemire algorithm.
939 if ((decimal_parse.subrange_begin == nullptr) &&
940 EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
941 return result;
942 }
943 CalculatedFloat calculated =
944 CalculateFromParsedDecimal<FloatType>(decimal_parse);
945 EncodeResult(calculated, negative, &result, &value);
946 return result;
947 }
948 }
949 } // namespace
950
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,double & value,chars_format fmt)951 from_chars_result from_chars(absl::Nonnull<const char*> first,
952 absl::Nonnull<const char*> last, double& value,
953 chars_format fmt) {
954 return FromCharsImpl(first, last, value, fmt);
955 }
956
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,float & value,chars_format fmt)957 from_chars_result from_chars(absl::Nonnull<const char*> first,
958 absl::Nonnull<const char*> last, float& value,
959 chars_format fmt) {
960 return FromCharsImpl(first, last, value, fmt);
961 }
962
963 namespace {
964
965 // Table of powers of 10, from kPower10TableMinInclusive to
966 // kPower10TableMaxExclusive.
967 //
968 // kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
969 // mantissa. The high bit is always on.
970 //
971 // kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
972 //
973 // Power10Exponent(i) calculates the power-of-two exponent.
974 //
975 // For a number i, this gives the unique mantissaHigh and exponent such that
976 // (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
977 //
978 // For example, Python can confirm that the exact hexadecimal value of 1e60 is:
979 // >>> a = 1000000000000000000000000000000000000000000000000000000000000
980 // >>> hex(a)
981 // '0x9f4f2726179a224501d762422c946590d91000000000000000'
982 // Adding underscores at every 8th hex digit shows 50 hex digits:
983 // '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
984 // In this case, the high bit of the first hex digit, 9, is coincidentally set,
985 // so we do not have to do further shifting to deduce the 128-bit mantissa:
986 // - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
987 // - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
988 // where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
989 // digits are truncated.
990 //
991 // 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
992 // bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
993 // >>> b = 0x9f4f2726179a2245
994 // >>> ((b+0)<<136) <= a
995 // True
996 // >>> ((b+1)<<136) <= a
997 // False
998 //
999 // The tables were generated by
1000 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
1001 // after re-formatting its output into two arrays of N uint64_t values (instead
1002 // of an N element array of uint64_t pairs).
1003
1004 const uint64_t kPower10MantissaHighTable[] = {
1005 0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
1006 0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
1007 0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
1008 0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
1009 0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
1010 0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
1011 0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
1012 0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
1013 0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
1014 0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
1015 0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
1016 0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
1017 0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
1018 0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
1019 0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
1020 0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
1021 0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
1022 0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
1023 0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
1024 0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
1025 0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
1026 0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
1027 0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
1028 0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
1029 0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
1030 0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
1031 0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
1032 0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
1033 0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
1034 0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
1035 0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
1036 0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
1037 0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
1038 0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
1039 0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
1040 0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
1041 0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
1042 0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
1043 0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
1044 0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
1045 0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
1046 0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
1047 0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
1048 0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
1049 0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
1050 0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
1051 0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
1052 0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
1053 0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
1054 0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
1055 0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
1056 0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
1057 0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
1058 0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
1059 0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
1060 0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
1061 0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
1062 0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
1063 0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
1064 0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
1065 0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
1066 0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
1067 0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
1068 0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
1069 0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
1070 0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
1071 0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
1072 0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
1073 0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
1074 0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
1075 0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
1076 0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
1077 0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
1078 0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
1079 0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
1080 0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
1081 0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
1082 0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
1083 0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
1084 0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
1085 0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
1086 0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
1087 0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
1088 0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
1089 0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
1090 0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
1091 0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
1092 0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
1093 0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
1094 0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
1095 0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
1096 0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
1097 0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
1098 0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
1099 0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
1100 0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
1101 0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
1102 0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
1103 0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
1104 0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
1105 0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
1106 0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
1107 0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
1108 0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
1109 0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
1110 0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
1111 0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
1112 0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
1113 0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
1114 0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
1115 0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
1116 0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
1117 0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
1118 0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
1119 0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
1120 0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
1121 0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
1122 0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
1123 0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
1124 0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
1125 0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
1126 0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
1127 0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
1128 0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
1129 0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
1130 0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
1131 0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
1132 0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
1133 0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
1134 0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
1135 0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
1136 0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
1137 0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
1138 0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
1139 0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
1140 0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
1141 0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
1142 0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
1143 0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
1144 0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
1145 0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
1146 0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
1147 0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
1148 0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
1149 0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
1150 0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
1151 0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
1152 0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
1153 0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
1154 0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
1155 0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
1156 0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
1157 0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
1158 0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
1159 0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
1160 0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
1161 0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
1162 0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
1163 0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
1164 0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
1165 0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
1166 0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
1167 0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
1168 0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
1169 0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
1170 0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
1171 0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
1172 0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
1173 0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
1174 0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
1175 0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
1176 0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
1177 0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
1178 0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
1179 0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
1180 0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
1181 0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
1182 0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
1183 0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
1184 0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
1185 0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
1186 0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
1187 0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
1188 0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
1189 0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
1190 0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
1191 0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
1192 0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
1193 0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
1194 0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
1195 0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
1196 0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
1197 0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
1198 0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
1199 0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
1200 0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
1201 0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
1202 0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
1203 0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
1204 0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
1205 0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
1206 0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
1207 0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
1208 0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
1209 0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
1210 0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
1211 0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
1212 0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
1213 0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
1214 0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
1215 0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
1216 0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
1217 0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
1218 0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
1219 0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
1220 0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
1221 0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
1222 };
1223
1224 const uint64_t kPower10MantissaLowTable[] = {
1225 0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
1226 0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
1227 0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
1228 0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
1229 0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
1230 0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
1231 0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
1232 0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
1233 0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
1234 0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
1235 0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
1236 0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
1237 0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
1238 0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
1239 0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
1240 0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
1241 0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
1242 0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
1243 0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
1244 0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
1245 0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
1246 0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
1247 0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
1248 0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
1249 0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
1250 0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
1251 0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
1252 0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
1253 0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
1254 0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
1255 0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
1256 0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
1257 0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
1258 0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
1259 0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
1260 0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
1261 0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
1262 0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
1263 0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
1264 0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
1265 0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
1266 0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
1267 0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
1268 0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
1269 0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
1270 0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
1271 0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
1272 0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
1273 0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
1274 0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
1275 0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
1276 0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
1277 0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
1278 0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
1279 0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
1280 0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
1281 0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
1282 0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
1283 0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
1284 0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
1285 0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
1286 0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
1287 0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
1288 0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
1289 0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
1290 0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
1291 0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
1292 0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
1293 0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
1294 0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
1295 0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
1296 0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
1297 0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
1298 0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
1299 0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
1300 0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
1301 0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
1302 0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
1303 0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
1304 0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
1305 0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
1306 0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
1307 0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
1308 0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
1309 0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
1310 0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
1311 0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
1312 0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
1313 0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
1314 0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
1315 0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
1316 0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
1317 0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
1318 0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
1319 0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
1320 0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
1321 0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
1322 0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
1323 0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
1324 0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
1325 0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
1326 0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
1327 0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
1328 0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
1329 0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
1330 0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
1331 0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
1332 0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
1333 0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
1334 0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
1335 0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
1336 0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
1337 0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
1338 0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
1339 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1340 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1341 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1342 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1343 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1344 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1345 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1346 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1347 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1348 0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
1349 0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
1350 0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
1351 0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
1352 0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
1353 0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
1354 0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
1355 0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
1356 0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
1357 0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
1358 0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
1359 0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
1360 0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
1361 0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
1362 0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
1363 0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
1364 0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
1365 0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
1366 0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
1367 0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
1368 0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
1369 0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
1370 0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
1371 0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
1372 0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
1373 0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
1374 0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
1375 0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
1376 0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
1377 0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
1378 0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
1379 0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
1380 0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
1381 0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
1382 0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
1383 0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
1384 0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
1385 0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
1386 0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
1387 0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
1388 0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
1389 0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
1390 0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
1391 0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
1392 0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
1393 0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
1394 0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
1395 0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
1396 0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
1397 0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
1398 0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
1399 0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
1400 0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
1401 0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
1402 0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
1403 0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
1404 0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
1405 0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
1406 0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
1407 0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
1408 0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
1409 0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
1410 0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
1411 0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
1412 0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
1413 0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
1414 0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
1415 0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
1416 0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
1417 0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
1418 0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
1419 0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
1420 0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
1421 0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
1422 0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
1423 0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
1424 0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
1425 0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
1426 0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
1427 0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
1428 0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
1429 0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
1430 0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
1431 0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
1432 0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
1433 0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
1434 0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
1435 0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
1436 0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
1437 0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
1438 0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
1439 0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
1440 0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
1441 0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
1442 };
1443
1444 } // namespace
1445 ABSL_NAMESPACE_END
1446 } // namespace absl
1447