xref: /aosp_15_r20/external/abseil-cpp/absl/strings/charconv.cc (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/charconv.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <limits>
22 #include <system_error>  // NOLINT(build/c++11)
23 
24 #include "absl/base/casts.h"
25 #include "absl/base/config.h"
26 #include "absl/base/nullability.h"
27 #include "absl/numeric/bits.h"
28 #include "absl/numeric/int128.h"
29 #include "absl/strings/internal/charconv_bigint.h"
30 #include "absl/strings/internal/charconv_parse.h"
31 
32 // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
33 // point numbers have the same endianness in memory as a bitfield struct
34 // containing the corresponding parts.
35 //
36 // When set, we replace calls to ldexp() with manual bit packing, which is
37 // faster and is unaffected by floating point environment.
38 #ifdef ABSL_BIT_PACK_FLOATS
39 #error ABSL_BIT_PACK_FLOATS cannot be directly set
40 #elif defined(__x86_64__) || defined(_M_X64)
41 #define ABSL_BIT_PACK_FLOATS 1
42 #endif
43 
44 // A note about subnormals:
45 //
46 // The code below talks about "normals" and "subnormals".  A normal IEEE float
47 // has a fixed-width mantissa and power of two exponent.  For example, a normal
48 // `double` has a 53-bit mantissa.  Because the high bit is always 1, it is not
49 // stored in the representation.  The implicit bit buys an extra bit of
50 // resolution in the datatype.
51 //
52 // The downside of this scheme is that there is a large gap between DBL_MIN and
53 // zero.  (Large, at least, relative to the different between DBL_MIN and the
54 // next representable number).  This gap is softened by the "subnormal" numbers,
55 // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
56 // bit.  An all-bits-zero exponent in the encoding represents subnormals.  (Zero
57 // is represented as a subnormal with an all-bits-zero mantissa.)
58 //
59 // The code below, in calculations, represents the mantissa as a uint64_t.  The
60 // end result normally has the 53rd bit set.  It represents subnormals by using
61 // narrower mantissas.
62 
63 namespace absl {
64 ABSL_NAMESPACE_BEGIN
65 namespace {
66 
67 template <typename FloatType>
68 struct FloatTraits;
69 
70 template <>
71 struct FloatTraits<double> {
72   using mantissa_t = uint64_t;
73 
74   // The number of bits in the given float type.
75   static constexpr int kTargetBits = 64;
76 
77   // The number of exponent bits in the given float type.
78   static constexpr int kTargetExponentBits = 11;
79 
80   // The number of mantissa bits in the given float type.  This includes the
81   // implied high bit.
82   static constexpr int kTargetMantissaBits = 53;
83 
84   // The largest supported IEEE exponent, in our integral mantissa
85   // representation.
86   //
87   // If `m` is the largest possible int kTargetMantissaBits bits wide, then
88   // m * 2**kMaxExponent is exactly equal to DBL_MAX.
89   static constexpr int kMaxExponent = 971;
90 
91   // The smallest supported IEEE normal exponent, in our integral mantissa
92   // representation.
93   //
94   // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
95   // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
96   static constexpr int kMinNormalExponent = -1074;
97 
98   // The IEEE exponent bias.  It equals ((1 << (kTargetExponentBits - 1)) - 1).
99   static constexpr int kExponentBias = 1023;
100 
101   // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment.  It equals (63 - 1 -
102   // kTargetMantissaBits).
103   static constexpr int kEiselLemireShift = 9;
104 
105   // The Eisel-Lemire high64_mask.  It equals ((1 << kEiselLemireShift) - 1).
106   static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
107 
108   // The smallest negative integer N (smallest negative means furthest from
109   // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
110   // positive. Parsing a smaller (more negative) N will produce zero.
111   //
112   // Adjusting the decimal point and exponent, without adjusting the value,
113   // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
114   //
115   // 9999999999999999999, with 19 nines but no decimal point, is the largest
116   // "repeated nines" integer that fits in a uint64_t.
117   static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
118 
119   // The smallest positive integer N such that parsing 1eN produces infinity.
120   // Parsing a smaller N will produce something finite.
121   static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
122 
MakeNanabsl::__anone834fbc80111::FloatTraits123   static double MakeNan(absl::Nonnull<const char*> tagp) {
124 #if ABSL_HAVE_BUILTIN(__builtin_nan)
125     // Use __builtin_nan() if available since it has a fix for
126     // https://bugs.llvm.org/show_bug.cgi?id=37778
127     // std::nan may use the glibc implementation.
128     return __builtin_nan(tagp);
129 #else
130     // Support nan no matter which namespace it's in.  Some platforms
131     // incorrectly don't put it in namespace std.
132     using namespace std;  // NOLINT
133     return nan(tagp);
134 #endif
135   }
136 
137   // Builds a nonzero floating point number out of the provided parts.
138   //
139   // This is intended to do the same operation as ldexp(mantissa, exponent),
140   // but using purely integer math, to avoid -ffastmath and floating
141   // point environment issues.  Using type punning is also faster. We fall back
142   // to ldexp on a per-platform basis for portability.
143   //
144   // `exponent` must be between kMinNormalExponent and kMaxExponent.
145   //
146   // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
147   // a normal value is made, or it must be less narrow than that, in which case
148   // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
149   // made.
Makeabsl::__anone834fbc80111::FloatTraits150   static double Make(mantissa_t mantissa, int exponent, bool sign) {
151 #ifndef ABSL_BIT_PACK_FLOATS
152     // Support ldexp no matter which namespace it's in.  Some platforms
153     // incorrectly don't put it in namespace std.
154     using namespace std;  // NOLINT
155     return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
156 #else
157     constexpr uint64_t kMantissaMask =
158         (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
159     uint64_t dbl = static_cast<uint64_t>(sign) << 63;
160     if (mantissa > kMantissaMask) {
161       // Normal value.
162       // Adjust by 1023 for the exponent representation bias, and an additional
163       // 52 due to the implied decimal point in the IEEE mantissa
164       // representation.
165       dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
166              << 52;
167       mantissa &= kMantissaMask;
168     } else {
169       // subnormal value
170       assert(exponent == kMinNormalExponent);
171     }
172     dbl += mantissa;
173     return absl::bit_cast<double>(dbl);
174 #endif  // ABSL_BIT_PACK_FLOATS
175   }
176 };
177 
178 // Specialization of floating point traits for the `float` type.  See the
179 // FloatTraits<double> specialization above for meaning of each of the following
180 // members and methods.
181 template <>
182 struct FloatTraits<float> {
183   using mantissa_t = uint32_t;
184 
185   static constexpr int kTargetBits = 32;
186   static constexpr int kTargetExponentBits = 8;
187   static constexpr int kTargetMantissaBits = 24;
188   static constexpr int kMaxExponent = 104;
189   static constexpr int kMinNormalExponent = -149;
190   static constexpr int kExponentBias = 127;
191   static constexpr int kEiselLemireShift = 38;
192   static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
193   static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
194   static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
195 
MakeNanabsl::__anone834fbc80111::FloatTraits196   static float MakeNan(absl::Nonnull<const char*> tagp) {
197 #if ABSL_HAVE_BUILTIN(__builtin_nanf)
198     // Use __builtin_nanf() if available since it has a fix for
199     // https://bugs.llvm.org/show_bug.cgi?id=37778
200     // std::nanf may use the glibc implementation.
201     return __builtin_nanf(tagp);
202 #else
203     // Support nanf no matter which namespace it's in.  Some platforms
204     // incorrectly don't put it in namespace std.
205     using namespace std;  // NOLINT
206     return std::nanf(tagp);
207 #endif
208   }
209 
Makeabsl::__anone834fbc80111::FloatTraits210   static float Make(mantissa_t mantissa, int exponent, bool sign) {
211 #ifndef ABSL_BIT_PACK_FLOATS
212     // Support ldexpf no matter which namespace it's in.  Some platforms
213     // incorrectly don't put it in namespace std.
214     using namespace std;  // NOLINT
215     return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
216 #else
217     constexpr uint32_t kMantissaMask =
218         (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
219     uint32_t flt = static_cast<uint32_t>(sign) << 31;
220     if (mantissa > kMantissaMask) {
221       // Normal value.
222       // Adjust by 127 for the exponent representation bias, and an additional
223       // 23 due to the implied decimal point in the IEEE mantissa
224       // representation.
225       flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
226              << 23;
227       mantissa &= kMantissaMask;
228     } else {
229       // subnormal value
230       assert(exponent == kMinNormalExponent);
231     }
232     flt += mantissa;
233     return absl::bit_cast<float>(flt);
234 #endif  // ABSL_BIT_PACK_FLOATS
235   }
236 };
237 
238 // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
239 // and a power of 2.  The two helper functions Power10Mantissa(n) and
240 // Power10Exponent(n) perform this task.  Together, these represent a hand-
241 // rolled floating point value which is equal to or just less than 10**n.
242 //
243 // The return values satisfy two range guarantees:
244 //
245 //   Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
246 //     < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
247 //
248 //   2**63 <= Power10Mantissa(n) < 2**64.
249 //
250 // See the "Table of powers of 10" comment below for a "1e60" example.
251 //
252 // Lookups into the power-of-10 table must first check the Power10Overflow() and
253 // Power10Underflow() functions, to avoid out-of-bounds table access.
254 //
255 // Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
256 // indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
257 extern const uint64_t kPower10MantissaHighTable[];  // High 64 of 128 bits.
258 extern const uint64_t kPower10MantissaLowTable[];   // Low  64 of 128 bits.
259 
260 // The smallest (inclusive) allowed value for use with the Power10Mantissa()
261 // and Power10Exponent() functions below.  (If a smaller exponent is needed in
262 // calculations, the end result is guaranteed to underflow.)
263 constexpr int kPower10TableMinInclusive = -342;
264 
265 // The largest (exclusive) allowed value for use with the Power10Mantissa() and
266 // Power10Exponent() functions below.  (If a larger-or-equal exponent is needed
267 // in calculations, the end result is guaranteed to overflow.)
268 constexpr int kPower10TableMaxExclusive = 309;
269 
Power10Mantissa(int n)270 uint64_t Power10Mantissa(int n) {
271   return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
272 }
273 
Power10Exponent(int n)274 int Power10Exponent(int n) {
275   // The 217706 etc magic numbers encode the results as a formula instead of a
276   // table. Their equivalence (over the kPower10TableMinInclusive ..
277   // kPower10TableMaxExclusive range) is confirmed by
278   // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
279   return (217706 * n >> 16) - 63;
280 }
281 
282 // Returns true if n is large enough that 10**n always results in an IEEE
283 // overflow.
Power10Overflow(int n)284 bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
285 
286 // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
287 // always results in an IEEE underflow.
Power10Underflow(int n)288 bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
289 
290 // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
291 // to 10**n numerically.  Put another way, this returns true if there is no
292 // truncation error in Power10Mantissa(n).
Power10Exact(int n)293 bool Power10Exact(int n) { return n >= 0 && n <= 27; }
294 
295 // Sentinel exponent values for representing numbers too large or too close to
296 // zero to represent in a double.
297 constexpr int kOverflow = 99999;
298 constexpr int kUnderflow = -99999;
299 
300 // Struct representing the calculated conversion result of a positive (nonzero)
301 // floating point number.
302 //
303 // The calculated number is mantissa * 2**exponent (mantissa is treated as an
304 // integer.)  `mantissa` is chosen to be the correct width for the IEEE float
305 // representation being calculated.  (`mantissa` will always have the same bit
306 // width for normal values, and narrower bit widths for subnormals.)
307 //
308 // If the result of conversion was an underflow or overflow, exponent is set
309 // to kUnderflow or kOverflow.
310 struct CalculatedFloat {
311   uint64_t mantissa = 0;
312   int exponent = 0;
313 };
314 
315 // Returns the bit width of the given uint128.  (Equivalently, returns 128
316 // minus the number of leading zero bits.)
BitWidth(uint128 value)317 int BitWidth(uint128 value) {
318   if (Uint128High64(value) == 0) {
319     // This static_cast is only needed when using a std::bit_width()
320     // implementation that does not have the fix for LWG 3656 applied.
321     return static_cast<int>(bit_width(Uint128Low64(value)));
322   }
323   return 128 - countl_zero(Uint128High64(value));
324 }
325 
326 // Calculates how far to the right a mantissa needs to be shifted to create a
327 // properly adjusted mantissa for an IEEE floating point number.
328 //
329 // `mantissa_width` is the bit width of the mantissa to be shifted, and
330 // `binary_exponent` is the exponent of the number before the shift.
331 //
332 // This accounts for subnormal values, and will return a larger-than-normal
333 // shift if binary_exponent would otherwise be too low.
334 template <typename FloatType>
NormalizedShiftSize(int mantissa_width,int binary_exponent)335 int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
336   const int normal_shift =
337       mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
338   const int minimum_shift =
339       FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
340   return std::max(normal_shift, minimum_shift);
341 }
342 
343 // Right shifts a uint128 so that it has the requested bit width.  (The
344 // resulting value will have 128 - bit_width leading zeroes.)  The initial
345 // `value` must be wider than the requested bit width.
346 //
347 // Returns the number of bits shifted.
TruncateToBitWidth(int bit_width,absl::Nonnull<uint128 * > value)348 int TruncateToBitWidth(int bit_width, absl::Nonnull<uint128*> value) {
349   const int current_bit_width = BitWidth(*value);
350   const int shift = current_bit_width - bit_width;
351   *value >>= shift;
352   return shift;
353 }
354 
355 // Checks if the given ParsedFloat represents one of the edge cases that are
356 // not dependent on number base: zero, infinity, or NaN.  If so, sets *value
357 // the appropriate double, and returns true.
358 template <typename FloatType>
HandleEdgeCase(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value)359 bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
360                     absl::Nonnull<FloatType*> value) {
361   if (input.type == strings_internal::FloatType::kNan) {
362     // A bug in both clang < 7 and gcc would cause the compiler to optimize
363     // away the buffer we are building below.  Declaring the buffer volatile
364     // avoids the issue, and has no measurable performance impact in
365     // microbenchmarks.
366     //
367     // https://bugs.llvm.org/show_bug.cgi?id=37778
368     // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
369     constexpr ptrdiff_t kNanBufferSize = 128;
370 #if (defined(__GNUC__) && !defined(__clang__)) || \
371     (defined(__clang__) && __clang_major__ < 7)
372     volatile char n_char_sequence[kNanBufferSize];
373 #else
374     char n_char_sequence[kNanBufferSize];
375 #endif
376     if (input.subrange_begin == nullptr) {
377       n_char_sequence[0] = '\0';
378     } else {
379       ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
380       nan_size = std::min(nan_size, kNanBufferSize - 1);
381       std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
382       n_char_sequence[nan_size] = '\0';
383     }
384     char* nan_argument = const_cast<char*>(n_char_sequence);
385     *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
386                       : FloatTraits<FloatType>::MakeNan(nan_argument);
387     return true;
388   }
389   if (input.type == strings_internal::FloatType::kInfinity) {
390     *value = negative ? -std::numeric_limits<FloatType>::infinity()
391                       : std::numeric_limits<FloatType>::infinity();
392     return true;
393   }
394   if (input.mantissa == 0) {
395     *value = negative ? -0.0 : 0.0;
396     return true;
397   }
398   return false;
399 }
400 
401 // Given a CalculatedFloat result of a from_chars conversion, generate the
402 // correct output values.
403 //
404 // CalculatedFloat can represent an underflow or overflow, in which case the
405 // error code in *result is set.  Otherwise, the calculated floating point
406 // number is stored in *value.
407 template <typename FloatType>
EncodeResult(const CalculatedFloat & calculated,bool negative,absl::Nonnull<absl::from_chars_result * > result,absl::Nonnull<FloatType * > value)408 void EncodeResult(const CalculatedFloat& calculated, bool negative,
409                   absl::Nonnull<absl::from_chars_result*> result,
410                   absl::Nonnull<FloatType*> value) {
411   if (calculated.exponent == kOverflow) {
412     result->ec = std::errc::result_out_of_range;
413     *value = negative ? -std::numeric_limits<FloatType>::max()
414                       : std::numeric_limits<FloatType>::max();
415     return;
416   } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
417     result->ec = std::errc::result_out_of_range;
418     *value = negative ? -0.0 : 0.0;
419     return;
420   }
421   *value = FloatTraits<FloatType>::Make(
422       static_cast<typename FloatTraits<FloatType>::mantissa_t>(
423           calculated.mantissa),
424       calculated.exponent, negative);
425 }
426 
427 // Returns the given uint128 shifted to the right by `shift` bits, and rounds
428 // the remaining bits using round_to_nearest logic.  The value is returned as a
429 // uint64_t, since this is the type used by this library for storing calculated
430 // floating point mantissas.
431 //
432 // It is expected that the width of the input value shifted by `shift` will
433 // be the correct bit-width for the target mantissa, which is strictly narrower
434 // than a uint64_t.
435 //
436 // If `input_exact` is false, then a nonzero error epsilon is assumed.  For
437 // rounding purposes, the true value being rounded is strictly greater than the
438 // input value.  The error may represent a single lost carry bit.
439 //
440 // When input_exact, shifted bits of the form 1000000... represent a tie, which
441 // is broken by rounding to even -- the rounding direction is chosen so the low
442 // bit of the returned value is 0.
443 //
444 // When !input_exact, shifted bits of the form 10000000... represent a value
445 // strictly greater than one half (due to the error epsilon), and so ties are
446 // always broken by rounding up.
447 //
448 // When !input_exact, shifted bits of the form 01111111... are uncertain;
449 // the true value may or may not be greater than 10000000..., due to the
450 // possible lost carry bit.  The correct rounding direction is unknown.  In this
451 // case, the result is rounded down, and `output_exact` is set to false.
452 //
453 // Zero and negative values of `shift` are accepted, in which case the word is
454 // shifted left, as necessary.
ShiftRightAndRound(uint128 value,int shift,bool input_exact,absl::Nonnull<bool * > output_exact)455 uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
456                             absl::Nonnull<bool*> output_exact) {
457   if (shift <= 0) {
458     *output_exact = input_exact;
459     return static_cast<uint64_t>(value << -shift);
460   }
461   if (shift >= 128) {
462     // Exponent is so small that we are shifting away all significant bits.
463     // Answer will not be representable, even as a subnormal, so return a zero
464     // mantissa (which represents underflow).
465     *output_exact = true;
466     return 0;
467   }
468 
469   *output_exact = true;
470   const uint128 shift_mask = (uint128(1) << shift) - 1;
471   const uint128 halfway_point = uint128(1) << (shift - 1);
472 
473   const uint128 shifted_bits = value & shift_mask;
474   value >>= shift;
475   if (shifted_bits > halfway_point) {
476     // Shifted bits greater than 10000... require rounding up.
477     return static_cast<uint64_t>(value + 1);
478   }
479   if (shifted_bits == halfway_point) {
480     // In exact mode, shifted bits of 10000... mean we're exactly halfway
481     // between two numbers, and we must round to even.  So only round up if
482     // the low bit of `value` is set.
483     //
484     // In inexact mode, the nonzero error means the actual value is greater
485     // than the halfway point and we must always round up.
486     if ((value & 1) == 1 || !input_exact) {
487       ++value;
488     }
489     return static_cast<uint64_t>(value);
490   }
491   if (!input_exact && shifted_bits == halfway_point - 1) {
492     // Rounding direction is unclear, due to error.
493     *output_exact = false;
494   }
495   // Otherwise, round down.
496   return static_cast<uint64_t>(value);
497 }
498 
499 // Checks if a floating point guess needs to be rounded up, using high precision
500 // math.
501 //
502 // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
503 // number represented by `parsed_decimal`.
504 //
505 // The exact number represented by `parsed_decimal` must lie between the two
506 // numbers:
507 //   A = `guess_mantissa * 2**guess_exponent`
508 //   B = `(guess_mantissa + 1) * 2**guess_exponent`
509 //
510 // This function returns false if `A` is the better guess, and true if `B` is
511 // the better guess, with rounding ties broken by rounding to even.
MustRoundUp(uint64_t guess_mantissa,int guess_exponent,const strings_internal::ParsedFloat & parsed_decimal)512 bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
513                  const strings_internal::ParsedFloat& parsed_decimal) {
514   // 768 is the number of digits needed in the worst case.  We could determine a
515   // better limit dynamically based on the value of parsed_decimal.exponent.
516   // This would optimize pathological input cases only.  (Sane inputs won't have
517   // hundreds of digits of mantissa.)
518   absl::strings_internal::BigUnsigned<84> exact_mantissa;
519   int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
520 
521   // Adjust the `guess` arguments to be halfway between A and B.
522   guess_mantissa = guess_mantissa * 2 + 1;
523   guess_exponent -= 1;
524 
525   // In our comparison:
526   // lhs = exact = exact_mantissa * 10**exact_exponent
527   //             = exact_mantissa * 5**exact_exponent * 2**exact_exponent
528   // rhs = guess = guess_mantissa * 2**guess_exponent
529   //
530   // Because we are doing integer math, we can't directly deal with negative
531   // exponents.  We instead move these to the other side of the inequality.
532   absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
533   int comparison;
534   if (exact_exponent >= 0) {
535     lhs.MultiplyByFiveToTheNth(exact_exponent);
536     absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
537     // There are powers of 2 on both sides of the inequality; reduce this to
538     // a single bit-shift.
539     if (exact_exponent > guess_exponent) {
540       lhs.ShiftLeft(exact_exponent - guess_exponent);
541     } else {
542       rhs.ShiftLeft(guess_exponent - exact_exponent);
543     }
544     comparison = Compare(lhs, rhs);
545   } else {
546     // Move the power of 5 to the other side of the equation, giving us:
547     // lhs = exact_mantissa * 2**exact_exponent
548     // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
549     absl::strings_internal::BigUnsigned<84> rhs =
550         absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
551     rhs.MultiplyBy(guess_mantissa);
552     if (exact_exponent > guess_exponent) {
553       lhs.ShiftLeft(exact_exponent - guess_exponent);
554     } else {
555       rhs.ShiftLeft(guess_exponent - exact_exponent);
556     }
557     comparison = Compare(lhs, rhs);
558   }
559   if (comparison < 0) {
560     return false;
561   } else if (comparison > 0) {
562     return true;
563   } else {
564     // When lhs == rhs, the decimal input is exactly between A and B.
565     // Round towards even -- round up only if the low bit of the initial
566     // `guess_mantissa` was a 1.  We shifted guess_mantissa left 1 bit at
567     // the beginning of this function, so test the 2nd bit here.
568     return (guess_mantissa & 2) == 2;
569   }
570 }
571 
572 // Constructs a CalculatedFloat from a given mantissa and exponent, but
573 // with the following normalizations applied:
574 //
575 // If rounding has caused mantissa to increase just past the allowed bit
576 // width, shift and adjust exponent.
577 //
578 // If exponent is too high, sets kOverflow.
579 //
580 // If mantissa is zero (representing a non-zero value not representable, even
581 // as a subnormal), sets kUnderflow.
582 template <typename FloatType>
CalculatedFloatFromRawValues(uint64_t mantissa,int exponent)583 CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
584   CalculatedFloat result;
585   if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
586     mantissa >>= 1;
587     exponent += 1;
588   }
589   if (exponent > FloatTraits<FloatType>::kMaxExponent) {
590     result.exponent = kOverflow;
591   } else if (mantissa == 0) {
592     result.exponent = kUnderflow;
593   } else {
594     result.exponent = exponent;
595     result.mantissa = mantissa;
596   }
597   return result;
598 }
599 
600 template <typename FloatType>
CalculateFromParsedHexadecimal(const strings_internal::ParsedFloat & parsed_hex)601 CalculatedFloat CalculateFromParsedHexadecimal(
602     const strings_internal::ParsedFloat& parsed_hex) {
603   uint64_t mantissa = parsed_hex.mantissa;
604   int exponent = parsed_hex.exponent;
605   // This static_cast is only needed when using a std::bit_width()
606   // implementation that does not have the fix for LWG 3656 applied.
607   int mantissa_width = static_cast<int>(bit_width(mantissa));
608   const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
609   bool result_exact;
610   exponent += shift;
611   mantissa = ShiftRightAndRound(mantissa, shift,
612                                 /* input exact= */ true, &result_exact);
613   // ParseFloat handles rounding in the hexadecimal case, so we don't have to
614   // check `result_exact` here.
615   return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
616 }
617 
618 template <typename FloatType>
CalculateFromParsedDecimal(const strings_internal::ParsedFloat & parsed_decimal)619 CalculatedFloat CalculateFromParsedDecimal(
620     const strings_internal::ParsedFloat& parsed_decimal) {
621   CalculatedFloat result;
622 
623   // Large or small enough decimal exponents will always result in overflow
624   // or underflow.
625   if (Power10Underflow(parsed_decimal.exponent)) {
626     result.exponent = kUnderflow;
627     return result;
628   } else if (Power10Overflow(parsed_decimal.exponent)) {
629     result.exponent = kOverflow;
630     return result;
631   }
632 
633   // Otherwise convert our power of 10 into a power of 2 times an integer
634   // mantissa, and multiply this by our parsed decimal mantissa.
635   uint128 wide_binary_mantissa = parsed_decimal.mantissa;
636   wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
637   int binary_exponent = Power10Exponent(parsed_decimal.exponent);
638 
639   // Discard bits that are inaccurate due to truncation error.  The magic
640   // `mantissa_width` constants below are justified in
641   // https://abseil.io/about/design/charconv. They represent the number of bits
642   // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
643   // propagation.
644   bool mantissa_exact;
645   int mantissa_width;
646   if (parsed_decimal.subrange_begin) {
647     // Truncated mantissa
648     mantissa_width = 58;
649     mantissa_exact = false;
650     binary_exponent +=
651         TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
652   } else if (!Power10Exact(parsed_decimal.exponent)) {
653     // Exact mantissa, truncated power of ten
654     mantissa_width = 63;
655     mantissa_exact = false;
656     binary_exponent +=
657         TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
658   } else {
659     // Product is exact
660     mantissa_width = BitWidth(wide_binary_mantissa);
661     mantissa_exact = true;
662   }
663 
664   // Shift into an FloatType-sized mantissa, and round to nearest.
665   const int shift =
666       NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
667   bool result_exact;
668   binary_exponent += shift;
669   uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
670                                                 mantissa_exact, &result_exact);
671   if (!result_exact) {
672     // We could not determine the rounding direction using int128 math.  Use
673     // full resolution math instead.
674     if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
675       binary_mantissa += 1;
676     }
677   }
678 
679   return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
680                                                  binary_exponent);
681 }
682 
683 // As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
684 // primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
685 // not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
686 // the combined approach (falling back to an alternative implementation when
687 // this function returns false) is both fast and correct.
688 template <typename FloatType>
EiselLemire(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value,absl::Nonnull<std::errc * > ec)689 bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
690                  absl::Nonnull<FloatType*> value,
691                  absl::Nonnull<std::errc*> ec) {
692   uint64_t man = input.mantissa;
693   int exp10 = input.exponent;
694   if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
695     *value = negative ? -0.0 : 0.0;
696     *ec = std::errc::result_out_of_range;
697     return true;
698   } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
699     // Return max (a finite value) consistent with from_chars and DR 3081. For
700     // SimpleAtod and SimpleAtof, post-processing will return infinity.
701     *value = negative ? -std::numeric_limits<FloatType>::max()
702                       : std::numeric_limits<FloatType>::max();
703     *ec = std::errc::result_out_of_range;
704     return true;
705   }
706 
707   // Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
708   // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
709   static_assert(
710       FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
711           kPower10TableMinInclusive,
712       "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
713   static_assert(
714       FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
715           kPower10TableMaxExclusive,
716       "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
717 
718   // The terse (+) comments in this function body refer to sections of the
719   // https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
720   //
721   // That blog post discusses double precision (11 exponent bits with a -1023
722   // bias, 52 mantissa bits), but the same approach applies to single precision
723   // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
724   // computation here happens with 64-bit values (e.g. man) or 128-bit values
725   // (e.g. x) before finally converting to 64- or 32-bit floating point.
726   //
727   // See also "Number Parsing at a Gigabyte per Second, Software: Practice and
728   // Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
729 
730   // (+) Normalization.
731   int clz = countl_zero(man);
732   man <<= static_cast<unsigned int>(clz);
733   // The 217706 etc magic numbers are from the Power10Exponent function.
734   uint64_t ret_exp2 =
735       static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
736                             FloatTraits<FloatType>::kExponentBias - clz);
737 
738   // (+) Multiplication.
739   uint128 x = static_cast<uint128>(man) *
740               static_cast<uint128>(
741                   kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
742 
743   // (+) Wider Approximation.
744   static constexpr uint64_t high64_mask =
745       FloatTraits<FloatType>::kEiselLemireMask;
746   if (((Uint128High64(x) & high64_mask) == high64_mask) &&
747       (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
748     uint128 y =
749         static_cast<uint128>(man) *
750         static_cast<uint128>(
751             kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
752     x += Uint128High64(y);
753     // For example, parsing "4503599627370497.5" will take the if-true
754     // branch here (for double precision), since:
755     //  - x   = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
756     //  - y   = 0x8000000000000BFF_7FFFFFFFFFFFF400
757     //  - man = 0xA000000000000F00
758     // Likewise, when parsing "0.0625" for single precision:
759     //  - x   = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
760     //  - y   = 0x813FFFFFFFFFFFFF_8A00000000000000
761     //  - man = 0x9C40000000000000
762     if (((Uint128High64(x) & high64_mask) == high64_mask) &&
763         ((Uint128Low64(x) + 1) == 0) &&
764         (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
765       return false;
766     }
767   }
768 
769   // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
770   uint64_t msb = Uint128High64(x) >> 63;
771   uint64_t ret_man =
772       Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
773   ret_exp2 -= 1 ^ msb;
774 
775   // (+) Half-way Ambiguity.
776   //
777   // For example, parsing "1e+23" will take the if-true branch here (for double
778   // precision), since:
779   //  - x       = 0x54B40B1F852BDA00_0000000000000000
780   //  - ret_man = 0x002A5A058FC295ED
781   // Likewise, when parsing "20040229.0" for single precision:
782   //  - x       = 0x4C72894000000000_0000000000000000
783   //  - ret_man = 0x000000000131CA25
784   if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
785       ((ret_man & 3) == 1)) {
786     return false;
787   }
788 
789   // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
790   ret_man += ret_man & 1;  // Line From54a.
791   ret_man >>= 1;           // Line From54b.
792   // Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
793   // bits after the right shift by 1 at line From54b), so adjust for that.
794   //
795   // For example, parsing "9223372036854775807" will take the if-true branch
796   // here (for double precision), since:
797   //  - ret_man = 0x0020000000000000 = (1 << 53)
798   // Likewise, when parsing "2147483647.0" for single precision:
799   //  - ret_man = 0x0000000001000000 = (1 << 24)
800   if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
801     ret_exp2 += 1;
802     // Conceptually, we need a "ret_man >>= 1" in this if-block to balance
803     // incrementing ret_exp2 in the line immediately above. However, we only
804     // get here when line From54a overflowed (after adding a 1), so ret_man
805     // here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
806     // remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
807     // low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
808     //
809     // We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
810     // rarely taken) and technically 'more correct', so that mutation tests
811     // that would otherwise modify or omit that "ret_man >>= 1" don't complain
812     // that such code mutations have no observable effect.
813   }
814 
815   // ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
816   // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
817   // above means that we're in Inf/NaN space.
818   //
819   // The if block is equivalent to (but has fewer branches than):
820   //   if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
821   //
822   // For example, parsing "4.9406564584124654e-324" will take the if-true
823   // branch here, since ret_exp2 = -51.
824   static constexpr uint64_t max_exp2 =
825       (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
826   if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
827     return false;
828   }
829 
830 #ifndef ABSL_BIT_PACK_FLOATS
831   if (FloatTraits<FloatType>::kTargetBits == 64) {
832     *value = FloatTraits<FloatType>::Make(
833         (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
834         static_cast<int>(ret_exp2) - 1023 - 52, negative);
835     return true;
836   } else if (FloatTraits<FloatType>::kTargetBits == 32) {
837     *value = FloatTraits<FloatType>::Make(
838         (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
839         static_cast<int>(ret_exp2) - 127 - 23, negative);
840     return true;
841   }
842 #else
843   if (FloatTraits<FloatType>::kTargetBits == 64) {
844     uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
845     if (negative) {
846       ret_bits |= 0x8000000000000000u;
847     }
848     *value = absl::bit_cast<double>(ret_bits);
849     return true;
850   } else if (FloatTraits<FloatType>::kTargetBits == 32) {
851     uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
852                         (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
853     if (negative) {
854       ret_bits |= 0x80000000u;
855     }
856     *value = absl::bit_cast<float>(ret_bits);
857     return true;
858   }
859 #endif  // ABSL_BIT_PACK_FLOATS
860   return false;
861 }
862 
863 template <typename FloatType>
FromCharsImpl(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,FloatType & value,chars_format fmt_flags)864 from_chars_result FromCharsImpl(absl::Nonnull<const char*> first,
865                                 absl::Nonnull<const char*> last,
866                                 FloatType& value, chars_format fmt_flags) {
867   from_chars_result result;
868   result.ptr = first;  // overwritten on successful parse
869   result.ec = std::errc();
870 
871   bool negative = false;
872   if (first != last && *first == '-') {
873     ++first;
874     negative = true;
875   }
876   // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
877   // to parse a hexadecimal float.
878   if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
879       *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
880     const char* hex_first = first + 2;
881     strings_internal::ParsedFloat hex_parse =
882         strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
883     if (hex_parse.end == nullptr ||
884         hex_parse.type != strings_internal::FloatType::kNumber) {
885       // Either we failed to parse a hex float after the "0x", or we read
886       // "0xinf" or "0xnan" which we don't want to match.
887       //
888       // However, a string that begins with "0x" also begins with "0", which
889       // is normally a valid match for the number zero.  So we want these
890       // strings to match zero unless fmt_flags is `scientific`.  (This flag
891       // means an exponent is required, which the string "0" does not have.)
892       if (fmt_flags == chars_format::scientific) {
893         result.ec = std::errc::invalid_argument;
894       } else {
895         result.ptr = first + 1;
896         value = negative ? -0.0 : 0.0;
897       }
898       return result;
899     }
900     // We matched a value.
901     result.ptr = hex_parse.end;
902     if (HandleEdgeCase(hex_parse, negative, &value)) {
903       return result;
904     }
905     CalculatedFloat calculated =
906         CalculateFromParsedHexadecimal<FloatType>(hex_parse);
907     EncodeResult(calculated, negative, &result, &value);
908     return result;
909   }
910   // Otherwise, we choose the number base based on the flags.
911   if ((fmt_flags & chars_format::hex) == chars_format::hex) {
912     strings_internal::ParsedFloat hex_parse =
913         strings_internal::ParseFloat<16>(first, last, fmt_flags);
914     if (hex_parse.end == nullptr) {
915       result.ec = std::errc::invalid_argument;
916       return result;
917     }
918     result.ptr = hex_parse.end;
919     if (HandleEdgeCase(hex_parse, negative, &value)) {
920       return result;
921     }
922     CalculatedFloat calculated =
923         CalculateFromParsedHexadecimal<FloatType>(hex_parse);
924     EncodeResult(calculated, negative, &result, &value);
925     return result;
926   } else {
927     strings_internal::ParsedFloat decimal_parse =
928         strings_internal::ParseFloat<10>(first, last, fmt_flags);
929     if (decimal_parse.end == nullptr) {
930       result.ec = std::errc::invalid_argument;
931       return result;
932     }
933     result.ptr = decimal_parse.end;
934     if (HandleEdgeCase(decimal_parse, negative, &value)) {
935       return result;
936     }
937     // A nullptr subrange_begin means that the decimal_parse.mantissa is exact
938     // (not truncated), a precondition of the Eisel-Lemire algorithm.
939     if ((decimal_parse.subrange_begin == nullptr) &&
940         EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
941       return result;
942     }
943     CalculatedFloat calculated =
944         CalculateFromParsedDecimal<FloatType>(decimal_parse);
945     EncodeResult(calculated, negative, &result, &value);
946     return result;
947   }
948 }
949 }  // namespace
950 
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,double & value,chars_format fmt)951 from_chars_result from_chars(absl::Nonnull<const char*> first,
952                              absl::Nonnull<const char*> last, double& value,
953                              chars_format fmt) {
954   return FromCharsImpl(first, last, value, fmt);
955 }
956 
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,float & value,chars_format fmt)957 from_chars_result from_chars(absl::Nonnull<const char*> first,
958                              absl::Nonnull<const char*> last, float& value,
959                              chars_format fmt) {
960   return FromCharsImpl(first, last, value, fmt);
961 }
962 
963 namespace {
964 
965 // Table of powers of 10, from kPower10TableMinInclusive to
966 // kPower10TableMaxExclusive.
967 //
968 // kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
969 // mantissa. The high bit is always on.
970 //
971 // kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
972 //
973 // Power10Exponent(i) calculates the power-of-two exponent.
974 //
975 // For a number i, this gives the unique mantissaHigh and exponent such that
976 // (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
977 //
978 // For example, Python can confirm that the exact hexadecimal value of 1e60 is:
979 //    >>> a = 1000000000000000000000000000000000000000000000000000000000000
980 //    >>> hex(a)
981 //    '0x9f4f2726179a224501d762422c946590d91000000000000000'
982 // Adding underscores at every 8th hex digit shows 50 hex digits:
983 //    '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
984 // In this case, the high bit of the first hex digit, 9, is coincidentally set,
985 // so we do not have to do further shifting to deduce the 128-bit mantissa:
986 //   - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
987 //   - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
988 // where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
989 // digits are truncated.
990 //
991 // 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
992 // bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
993 //    >>> b = 0x9f4f2726179a2245
994 //    >>> ((b+0)<<136) <= a
995 //    True
996 //    >>> ((b+1)<<136) <= a
997 //    False
998 //
999 // The tables were generated by
1000 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
1001 // after re-formatting its output into two arrays of N uint64_t values (instead
1002 // of an N element array of uint64_t pairs).
1003 
1004 const uint64_t kPower10MantissaHighTable[] = {
1005     0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
1006     0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
1007     0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
1008     0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
1009     0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
1010     0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
1011     0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
1012     0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
1013     0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
1014     0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
1015     0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
1016     0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
1017     0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
1018     0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
1019     0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
1020     0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
1021     0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
1022     0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
1023     0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
1024     0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
1025     0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
1026     0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
1027     0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
1028     0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
1029     0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
1030     0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
1031     0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
1032     0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
1033     0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
1034     0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
1035     0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
1036     0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
1037     0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
1038     0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
1039     0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
1040     0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
1041     0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
1042     0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
1043     0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
1044     0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
1045     0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
1046     0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
1047     0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
1048     0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
1049     0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
1050     0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
1051     0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
1052     0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
1053     0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
1054     0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
1055     0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
1056     0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
1057     0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
1058     0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
1059     0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
1060     0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
1061     0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
1062     0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
1063     0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
1064     0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
1065     0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
1066     0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
1067     0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
1068     0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
1069     0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
1070     0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
1071     0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
1072     0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
1073     0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
1074     0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
1075     0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
1076     0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
1077     0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
1078     0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
1079     0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
1080     0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
1081     0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
1082     0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
1083     0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
1084     0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
1085     0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
1086     0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
1087     0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
1088     0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
1089     0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
1090     0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
1091     0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
1092     0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
1093     0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
1094     0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
1095     0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
1096     0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
1097     0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
1098     0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
1099     0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
1100     0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
1101     0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
1102     0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
1103     0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
1104     0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
1105     0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
1106     0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
1107     0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
1108     0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
1109     0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
1110     0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
1111     0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
1112     0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
1113     0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
1114     0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
1115     0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
1116     0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
1117     0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
1118     0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
1119     0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
1120     0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
1121     0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
1122     0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
1123     0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
1124     0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
1125     0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
1126     0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
1127     0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
1128     0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
1129     0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
1130     0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
1131     0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
1132     0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
1133     0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
1134     0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
1135     0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
1136     0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
1137     0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
1138     0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
1139     0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
1140     0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
1141     0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
1142     0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
1143     0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
1144     0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
1145     0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
1146     0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
1147     0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
1148     0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
1149     0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
1150     0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
1151     0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
1152     0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
1153     0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
1154     0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
1155     0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
1156     0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
1157     0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
1158     0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
1159     0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
1160     0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
1161     0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
1162     0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
1163     0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
1164     0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
1165     0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
1166     0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
1167     0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
1168     0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
1169     0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
1170     0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
1171     0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
1172     0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
1173     0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
1174     0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
1175     0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
1176     0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
1177     0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
1178     0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
1179     0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
1180     0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
1181     0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
1182     0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
1183     0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
1184     0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
1185     0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
1186     0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
1187     0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
1188     0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
1189     0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
1190     0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
1191     0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
1192     0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
1193     0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
1194     0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
1195     0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
1196     0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
1197     0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
1198     0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
1199     0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
1200     0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
1201     0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
1202     0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
1203     0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
1204     0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
1205     0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
1206     0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
1207     0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
1208     0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
1209     0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
1210     0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
1211     0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
1212     0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
1213     0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
1214     0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
1215     0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
1216     0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
1217     0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
1218     0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
1219     0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
1220     0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
1221     0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
1222 };
1223 
1224 const uint64_t kPower10MantissaLowTable[] = {
1225     0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
1226     0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
1227     0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
1228     0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
1229     0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
1230     0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
1231     0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
1232     0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
1233     0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
1234     0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
1235     0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
1236     0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
1237     0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
1238     0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
1239     0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
1240     0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
1241     0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
1242     0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
1243     0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
1244     0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
1245     0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
1246     0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
1247     0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
1248     0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
1249     0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
1250     0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
1251     0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
1252     0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
1253     0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
1254     0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
1255     0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
1256     0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
1257     0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
1258     0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
1259     0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
1260     0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
1261     0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
1262     0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
1263     0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
1264     0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
1265     0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
1266     0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
1267     0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
1268     0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
1269     0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
1270     0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
1271     0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
1272     0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
1273     0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
1274     0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
1275     0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
1276     0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
1277     0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
1278     0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
1279     0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
1280     0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
1281     0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
1282     0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
1283     0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
1284     0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
1285     0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
1286     0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
1287     0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
1288     0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
1289     0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
1290     0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
1291     0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
1292     0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
1293     0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
1294     0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
1295     0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
1296     0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
1297     0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
1298     0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
1299     0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
1300     0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
1301     0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
1302     0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
1303     0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
1304     0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
1305     0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
1306     0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
1307     0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
1308     0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
1309     0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
1310     0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
1311     0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
1312     0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
1313     0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
1314     0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
1315     0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
1316     0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
1317     0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
1318     0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
1319     0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
1320     0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
1321     0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
1322     0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
1323     0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
1324     0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
1325     0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
1326     0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
1327     0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
1328     0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
1329     0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
1330     0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
1331     0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
1332     0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
1333     0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
1334     0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
1335     0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
1336     0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
1337     0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
1338     0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
1339     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1340     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1341     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1342     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1343     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1344     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1345     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1346     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1347     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1348     0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
1349     0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
1350     0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
1351     0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
1352     0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
1353     0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
1354     0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
1355     0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
1356     0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
1357     0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
1358     0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
1359     0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
1360     0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
1361     0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
1362     0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
1363     0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
1364     0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
1365     0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
1366     0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
1367     0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
1368     0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
1369     0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
1370     0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
1371     0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
1372     0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
1373     0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
1374     0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
1375     0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
1376     0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
1377     0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
1378     0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
1379     0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
1380     0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
1381     0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
1382     0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
1383     0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
1384     0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
1385     0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
1386     0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
1387     0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
1388     0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
1389     0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
1390     0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
1391     0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
1392     0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
1393     0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
1394     0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
1395     0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
1396     0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
1397     0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
1398     0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
1399     0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
1400     0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
1401     0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
1402     0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
1403     0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
1404     0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
1405     0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
1406     0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
1407     0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
1408     0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
1409     0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
1410     0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
1411     0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
1412     0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
1413     0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
1414     0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
1415     0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
1416     0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
1417     0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
1418     0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
1419     0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
1420     0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
1421     0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
1422     0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
1423     0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
1424     0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
1425     0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
1426     0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
1427     0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
1428     0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
1429     0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
1430     0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
1431     0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
1432     0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
1433     0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
1434     0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
1435     0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
1436     0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
1437     0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
1438     0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
1439     0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
1440     0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
1441     0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
1442 };
1443 
1444 }  // namespace
1445 ABSL_NAMESPACE_END
1446 }  // namespace absl
1447