xref: /aosp_15_r20/external/abseil-cpp/absl/random/distributions_test.cc (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/distributions.h"
16 
17 #include <cfloat>
18 #include <cmath>
19 #include <cstdint>
20 #include <limits>
21 #include <type_traits>
22 #include <utility>
23 #include <vector>
24 
25 #include "gtest/gtest.h"
26 #include "absl/meta/type_traits.h"
27 #include "absl/numeric/int128.h"
28 #include "absl/random/internal/distribution_test_util.h"
29 #include "absl/random/random.h"
30 
31 namespace {
32 
33 constexpr int kSize = 400000;
34 
35 class RandomDistributionsTest : public testing::Test {};
36 
37 struct Invalid {};
38 
39 template <typename A, typename B>
40 auto InferredUniformReturnT(int)
41     -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
42                               std::declval<A>(), std::declval<B>()));
43 
44 template <typename, typename>
45 Invalid InferredUniformReturnT(...);
46 
47 template <typename TagType, typename A, typename B>
48 auto InferredTaggedUniformReturnT(int)
49     -> decltype(absl::Uniform(std::declval<TagType>(),
50                               std::declval<absl::InsecureBitGen&>(),
51                               std::declval<A>(), std::declval<B>()));
52 
53 template <typename, typename, typename>
54 Invalid InferredTaggedUniformReturnT(...);
55 
56 // Given types <A, B, Expect>, CheckArgsInferType() verifies that
57 //
58 //   absl::Uniform(gen, A{}, B{})
59 //
60 // returns the type "Expect".
61 //
62 // This interface can also be used to assert that a given absl::Uniform()
63 // overload does not exist / will not compile. Given types <A, B>, the
64 // expression
65 //
66 //   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
67 //
68 // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
69 // resolve (via SFINAE) to the overload which returns type "Invalid". This
70 // allows tests to assert that an invocation such as
71 //
72 //   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
73 //
74 // should not compile, since neither type, float nor int, can precisely
75 // represent both endpoint-values. Writing:
76 //
77 //   CheckArgsInferType<float, int, Invalid>()
78 //
79 // will assert that this overload does not exist.
80 template <typename A, typename B, typename Expect>
CheckArgsInferType()81 void CheckArgsInferType() {
82   static_assert(
83       absl::conjunction<
84           std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
85           std::is_same<Expect,
86                        decltype(InferredUniformReturnT<B, A>(0))>>::value,
87       "");
88   static_assert(
89       absl::conjunction<
90           std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
91                                         absl::IntervalOpenOpenTag, A, B>(0))>,
92           std::is_same<Expect,
93                        decltype(InferredTaggedUniformReturnT<
94                                 absl::IntervalOpenOpenTag, B, A>(0))>>::value,
95       "");
96 }
97 
98 template <typename A, typename B, typename ExplicitRet>
99 auto ExplicitUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
100                                      std::declval<absl::InsecureBitGen&>(),
101                                      std::declval<A>(), std::declval<B>()));
102 
103 template <typename, typename, typename ExplicitRet>
104 Invalid ExplicitUniformReturnT(...);
105 
106 template <typename TagType, typename A, typename B, typename ExplicitRet>
107 auto ExplicitTaggedUniformReturnT(int)
108     -> decltype(absl::Uniform<ExplicitRet>(
109         std::declval<TagType>(), std::declval<absl::InsecureBitGen&>(),
110         std::declval<A>(), std::declval<B>()));
111 
112 template <typename, typename, typename, typename ExplicitRet>
113 Invalid ExplicitTaggedUniformReturnT(...);
114 
115 // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
116 //
117 //   absl::Uniform<Expect>(gen, A{}, B{})
118 //
119 // returns the type "Expect", and that the function-overload has the signature
120 //
121 //   Expect(URBG&, Expect, Expect)
122 template <typename A, typename B, typename Expect>
CheckArgsReturnExpectedType()123 void CheckArgsReturnExpectedType() {
124   static_assert(
125       absl::conjunction<
126           std::is_same<Expect,
127                        decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
128           std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
129                                    0))>>::value,
130       "");
131   static_assert(
132       absl::conjunction<
133           std::is_same<Expect,
134                        decltype(ExplicitTaggedUniformReturnT<
135                                 absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
136           std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
137                                         absl::IntervalOpenOpenTag, B, A,
138                                         Expect>(0))>>::value,
139       "");
140 }
141 
142 // Takes the type of `absl::Uniform<R>(gen)` if valid or `Invalid` otherwise.
143 template <typename R>
144 auto UniformNoBoundsReturnT(int)
145     -> decltype(absl::Uniform<R>(std::declval<absl::InsecureBitGen&>()));
146 
147 template <typename>
148 Invalid UniformNoBoundsReturnT(...);
149 
TEST_F(RandomDistributionsTest,UniformTypeInference)150 TEST_F(RandomDistributionsTest, UniformTypeInference) {
151   // Infers common types.
152   CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
153   CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
154   CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
155   CheckArgsInferType<int16_t, int16_t, int16_t>();
156   CheckArgsInferType<int32_t, int32_t, int32_t>();
157   CheckArgsInferType<int64_t, int64_t, int64_t>();
158   CheckArgsInferType<float, float, float>();
159   CheckArgsInferType<double, double, double>();
160 
161   // Explicitly-specified return-values override inferences.
162   CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
163   CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
164   CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
165   CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
166   CheckArgsReturnExpectedType<int16_t, int32_t, double>();
167   CheckArgsReturnExpectedType<float, float, double>();
168   CheckArgsReturnExpectedType<int, int, int16_t>();
169 
170   // Properly promotes uint16_t.
171   CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
172   CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
173   CheckArgsInferType<uint16_t, int32_t, int32_t>();
174   CheckArgsInferType<uint16_t, int64_t, int64_t>();
175   CheckArgsInferType<uint16_t, float, float>();
176   CheckArgsInferType<uint16_t, double, double>();
177 
178   // Properly promotes int16_t.
179   CheckArgsInferType<int16_t, int32_t, int32_t>();
180   CheckArgsInferType<int16_t, int64_t, int64_t>();
181   CheckArgsInferType<int16_t, float, float>();
182   CheckArgsInferType<int16_t, double, double>();
183 
184   // Invalid (u)int16_t-pairings do not compile.
185   // See "CheckArgsInferType" comments above, for how this is achieved.
186   CheckArgsInferType<uint16_t, int16_t, Invalid>();
187   CheckArgsInferType<int16_t, uint32_t, Invalid>();
188   CheckArgsInferType<int16_t, uint64_t, Invalid>();
189 
190   // Properly promotes uint32_t.
191   CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
192   CheckArgsInferType<uint32_t, int64_t, int64_t>();
193   CheckArgsInferType<uint32_t, double, double>();
194 
195   // Properly promotes int32_t.
196   CheckArgsInferType<int32_t, int64_t, int64_t>();
197   CheckArgsInferType<int32_t, double, double>();
198 
199   // Invalid (u)int32_t-pairings do not compile.
200   CheckArgsInferType<uint32_t, int32_t, Invalid>();
201   CheckArgsInferType<int32_t, uint64_t, Invalid>();
202   CheckArgsInferType<int32_t, float, Invalid>();
203   CheckArgsInferType<uint32_t, float, Invalid>();
204 
205   // Invalid (u)int64_t-pairings do not compile.
206   CheckArgsInferType<uint64_t, int64_t, Invalid>();
207   CheckArgsInferType<int64_t, float, Invalid>();
208   CheckArgsInferType<int64_t, double, Invalid>();
209 
210   // Properly promotes float.
211   CheckArgsInferType<float, double, double>();
212 }
213 
TEST_F(RandomDistributionsTest,UniformExamples)214 TEST_F(RandomDistributionsTest, UniformExamples) {
215   // Examples.
216   absl::InsecureBitGen gen;
217   EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
218   EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
219   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
220                              static_cast<uint16_t>(0), 1.0f));
221   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
222   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
223   EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
224   EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
225   EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
226 }
227 
TEST_F(RandomDistributionsTest,UniformNoBounds)228 TEST_F(RandomDistributionsTest, UniformNoBounds) {
229   absl::InsecureBitGen gen;
230 
231   absl::Uniform<uint8_t>(gen);
232   absl::Uniform<uint16_t>(gen);
233   absl::Uniform<uint32_t>(gen);
234   absl::Uniform<uint64_t>(gen);
235   absl::Uniform<absl::uint128>(gen);
236 
237   // Compile-time validity tests.
238 
239   // Allows unsigned ints.
240   testing::StaticAssertTypeEq<uint8_t,
241                               decltype(UniformNoBoundsReturnT<uint8_t>(0))>();
242   testing::StaticAssertTypeEq<uint16_t,
243                               decltype(UniformNoBoundsReturnT<uint16_t>(0))>();
244   testing::StaticAssertTypeEq<uint32_t,
245                               decltype(UniformNoBoundsReturnT<uint32_t>(0))>();
246   testing::StaticAssertTypeEq<uint64_t,
247                               decltype(UniformNoBoundsReturnT<uint64_t>(0))>();
248   testing::StaticAssertTypeEq<
249       absl::uint128, decltype(UniformNoBoundsReturnT<absl::uint128>(0))>();
250 
251   // Disallows signed ints.
252   testing::StaticAssertTypeEq<Invalid,
253                               decltype(UniformNoBoundsReturnT<int8_t>(0))>();
254   testing::StaticAssertTypeEq<Invalid,
255                               decltype(UniformNoBoundsReturnT<int16_t>(0))>();
256   testing::StaticAssertTypeEq<Invalid,
257                               decltype(UniformNoBoundsReturnT<int32_t>(0))>();
258   testing::StaticAssertTypeEq<Invalid,
259                               decltype(UniformNoBoundsReturnT<int64_t>(0))>();
260   testing::StaticAssertTypeEq<
261       Invalid, decltype(UniformNoBoundsReturnT<absl::int128>(0))>();
262 
263   // Disallows float types.
264   testing::StaticAssertTypeEq<Invalid,
265                               decltype(UniformNoBoundsReturnT<float>(0))>();
266   testing::StaticAssertTypeEq<Invalid,
267                               decltype(UniformNoBoundsReturnT<double>(0))>();
268 }
269 
TEST_F(RandomDistributionsTest,UniformNonsenseRanges)270 TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
271   // The ranges used in this test are undefined behavior.
272   // The results are arbitrary and subject to future changes.
273 
274 #if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
275   // We're using an x87-compatible FPU, and intermediate operations can be
276   // performed with 80-bit floats. This produces slightly different results from
277   // what we expect below.
278   GTEST_SKIP()
279       << "Skipping the test because we detected x87 floating-point semantics";
280 #endif
281 
282   absl::InsecureBitGen gen;
283 
284   // <uint>
285   EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
286   EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
287   EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
288   EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
289 
290   constexpr auto m = (std::numeric_limits<uint64_t>::max)();
291 
292   EXPECT_EQ(m, absl::Uniform(gen, m, m));
293   EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
294   EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
295   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
296   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
297   EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
298 
299   // <int>
300   EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
301   EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
302   EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
303   EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
304 
305   constexpr auto l = (std::numeric_limits<int64_t>::min)();
306   constexpr auto r = (std::numeric_limits<int64_t>::max)();
307 
308   EXPECT_EQ(l, absl::Uniform(gen, l, l));
309   EXPECT_EQ(r, absl::Uniform(gen, r, r));
310   EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
311   EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
312   EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
313   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
314   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
315   EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
316 
317   // <double>
318   const double e = std::nextafter(1.0, 2.0);  // 1 + epsilon
319   const double f = std::nextafter(1.0, 0.0);  // 1 - epsilon
320   const double g = std::numeric_limits<double>::denorm_min();
321 
322   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
323   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
324   EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
325 
326   EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
327   EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
328   EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
329 }
330 
331 // TODO(lar): Validate properties of non-default interval-semantics.
TEST_F(RandomDistributionsTest,UniformReal)332 TEST_F(RandomDistributionsTest, UniformReal) {
333   std::vector<double> values(kSize);
334 
335   absl::InsecureBitGen gen;
336   for (int i = 0; i < kSize; i++) {
337     values[i] = absl::Uniform(gen, 0, 1.0);
338   }
339 
340   const auto moments =
341       absl::random_internal::ComputeDistributionMoments(values);
342   EXPECT_NEAR(0.5, moments.mean, 0.02);
343   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
344   EXPECT_NEAR(0.0, moments.skewness, 0.02);
345   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
346 }
347 
TEST_F(RandomDistributionsTest,UniformInt)348 TEST_F(RandomDistributionsTest, UniformInt) {
349   std::vector<double> values(kSize);
350 
351   absl::InsecureBitGen gen;
352   for (int i = 0; i < kSize; i++) {
353     const int64_t kMax = 1000000000000ll;
354     int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
355     // convert to double.
356     values[i] = static_cast<double>(j) / static_cast<double>(kMax);
357   }
358 
359   const auto moments =
360       absl::random_internal::ComputeDistributionMoments(values);
361   EXPECT_NEAR(0.5, moments.mean, 0.02);
362   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
363   EXPECT_NEAR(0.0, moments.skewness, 0.02);
364   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
365 
366   /*
367   // NOTE: These are not supported by absl::Uniform, which is specialized
368   // on integer and real valued types.
369 
370   enum E { E0, E1 };    // enum
371   enum S : int { S0, S1 };    // signed enum
372   enum U : unsigned int { U0, U1 };  // unsigned enum
373 
374   absl::Uniform(gen, E0, E1);
375   absl::Uniform(gen, S0, S1);
376   absl::Uniform(gen, U0, U1);
377   */
378 }
379 
TEST_F(RandomDistributionsTest,Exponential)380 TEST_F(RandomDistributionsTest, Exponential) {
381   std::vector<double> values(kSize);
382 
383   absl::InsecureBitGen gen;
384   for (int i = 0; i < kSize; i++) {
385     values[i] = absl::Exponential<double>(gen);
386   }
387 
388   const auto moments =
389       absl::random_internal::ComputeDistributionMoments(values);
390   EXPECT_NEAR(1.0, moments.mean, 0.02);
391   EXPECT_NEAR(1.0, moments.variance, 0.025);
392   EXPECT_NEAR(2.0, moments.skewness, 0.1);
393   EXPECT_LT(5.0, moments.kurtosis);
394 }
395 
TEST_F(RandomDistributionsTest,PoissonDefault)396 TEST_F(RandomDistributionsTest, PoissonDefault) {
397   std::vector<double> values(kSize);
398 
399   absl::InsecureBitGen gen;
400   for (int i = 0; i < kSize; i++) {
401     values[i] = absl::Poisson<int64_t>(gen);
402   }
403 
404   const auto moments =
405       absl::random_internal::ComputeDistributionMoments(values);
406   EXPECT_NEAR(1.0, moments.mean, 0.02);
407   EXPECT_NEAR(1.0, moments.variance, 0.02);
408   EXPECT_NEAR(1.0, moments.skewness, 0.025);
409   EXPECT_LT(2.0, moments.kurtosis);
410 }
411 
TEST_F(RandomDistributionsTest,PoissonLarge)412 TEST_F(RandomDistributionsTest, PoissonLarge) {
413   constexpr double kMean = 100000000.0;
414   std::vector<double> values(kSize);
415 
416   absl::InsecureBitGen gen;
417   for (int i = 0; i < kSize; i++) {
418     values[i] = absl::Poisson<int64_t>(gen, kMean);
419   }
420 
421   const auto moments =
422       absl::random_internal::ComputeDistributionMoments(values);
423   EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
424   EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
425   EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
426   EXPECT_LT(2.0, moments.kurtosis);
427 }
428 
TEST_F(RandomDistributionsTest,Bernoulli)429 TEST_F(RandomDistributionsTest, Bernoulli) {
430   constexpr double kP = 0.5151515151;
431   std::vector<double> values(kSize);
432 
433   absl::InsecureBitGen gen;
434   for (int i = 0; i < kSize; i++) {
435     values[i] = absl::Bernoulli(gen, kP);
436   }
437 
438   const auto moments =
439       absl::random_internal::ComputeDistributionMoments(values);
440   EXPECT_NEAR(kP, moments.mean, 0.01);
441 }
442 
TEST_F(RandomDistributionsTest,Beta)443 TEST_F(RandomDistributionsTest, Beta) {
444   constexpr double kAlpha = 2.0;
445   constexpr double kBeta = 3.0;
446   std::vector<double> values(kSize);
447 
448   absl::InsecureBitGen gen;
449   for (int i = 0; i < kSize; i++) {
450     values[i] = absl::Beta(gen, kAlpha, kBeta);
451   }
452 
453   const auto moments =
454       absl::random_internal::ComputeDistributionMoments(values);
455   EXPECT_NEAR(0.4, moments.mean, 0.01);
456 }
457 
TEST_F(RandomDistributionsTest,Zipf)458 TEST_F(RandomDistributionsTest, Zipf) {
459   std::vector<double> values(kSize);
460 
461   absl::InsecureBitGen gen;
462   for (int i = 0; i < kSize; i++) {
463     values[i] = absl::Zipf<int64_t>(gen, 100);
464   }
465 
466   // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
467   // Given the parameter v = 1, this gives the following function:
468   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
469   const auto moments =
470       absl::random_internal::ComputeDistributionMoments(values);
471   EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
472 }
473 
TEST_F(RandomDistributionsTest,Gaussian)474 TEST_F(RandomDistributionsTest, Gaussian) {
475   std::vector<double> values(kSize);
476 
477   absl::InsecureBitGen gen;
478   for (int i = 0; i < kSize; i++) {
479     values[i] = absl::Gaussian<double>(gen);
480   }
481 
482   const auto moments =
483       absl::random_internal::ComputeDistributionMoments(values);
484   EXPECT_NEAR(0.0, moments.mean, 0.02);
485   EXPECT_NEAR(1.0, moments.variance, 0.04);
486   EXPECT_NEAR(0, moments.skewness, 0.2);
487   EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
488 }
489 
TEST_F(RandomDistributionsTest,LogUniform)490 TEST_F(RandomDistributionsTest, LogUniform) {
491   std::vector<double> values(kSize);
492 
493   absl::InsecureBitGen gen;
494   for (int i = 0; i < kSize; i++) {
495     values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
496   }
497 
498   // The mean is the sum of the fractional means of the uniform distributions:
499   // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
500   // [64..127][128..255][256..511][512..1023]
501   const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
502                        64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
503                       (2.0 * 11.0);
504 
505   const auto moments =
506       absl::random_internal::ComputeDistributionMoments(values);
507   EXPECT_NEAR(mean, moments.mean, 2) << moments;
508 }
509 
510 }  // namespace
511