1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: hash.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines the Abseil `hash` library and the Abseil hashing
20 // framework. This framework consists of the following:
21 //
22 // * The `absl::Hash` functor, which is used to invoke the hasher within the
23 // Abseil hashing framework. `absl::Hash<T>` supports most basic types and
24 // a number of Abseil types out of the box.
25 // * `AbslHashValue`, an extension point that allows you to extend types to
26 // support Abseil hashing without requiring you to define a hashing
27 // algorithm.
28 // * `HashState`, a type-erased class which implements the manipulation of the
29 // hash state (H) itself; contains member functions `combine()`,
30 // `combine_contiguous()`, and `combine_unordered()`; and which you can use
31 // to contribute to an existing hash state when hashing your types.
32 //
33 // Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework
34 // provides most of its utility by abstracting away the hash algorithm (and its
35 // implementation) entirely. Instead, a type invokes the Abseil hashing
36 // framework by simply combining its state with the state of known, hashable
37 // types. Hashing of that combined state is separately done by `absl::Hash`.
38 //
39 // One should assume that a hash algorithm is chosen randomly at the start of
40 // each process. E.g., `absl::Hash<int>{}(9)` in one process and
41 // `absl::Hash<int>{}(9)` in another process are likely to differ.
42 //
43 // `absl::Hash` may also produce different values from different dynamically
44 // loaded libraries. For this reason, `absl::Hash` values must never cross
45 // boundaries in dynamically loaded libraries (including when used in types like
46 // hash containers.)
47 //
48 // `absl::Hash` is intended to strongly mix input bits with a target of passing
49 // an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect).
50 //
51 // Example:
52 //
53 // // Suppose we have a class `Circle` for which we want to add hashing:
54 // class Circle {
55 // public:
56 // ...
57 // private:
58 // std::pair<int, int> center_;
59 // int radius_;
60 // };
61 //
62 // // To add hashing support to `Circle`, we simply need to add a free
63 // // (non-member) function `AbslHashValue()`, and return the combined hash
64 // // state of the existing hash state and the class state. You can add such a
65 // // free function using a friend declaration within the body of the class:
66 // class Circle {
67 // public:
68 // ...
69 // template <typename H>
70 // friend H AbslHashValue(H h, const Circle& c) {
71 // return H::combine(std::move(h), c.center_, c.radius_);
72 // }
73 // ...
74 // };
75 //
76 // For more information, see Adding Type Support to `absl::Hash` below.
77 //
78 #ifndef ABSL_HASH_HASH_H_
79 #define ABSL_HASH_HASH_H_
80
81 #include <tuple>
82 #include <utility>
83
84 #include "absl/functional/function_ref.h"
85 #include "absl/hash/internal/hash.h"
86
87 namespace absl {
88 ABSL_NAMESPACE_BEGIN
89
90 // -----------------------------------------------------------------------------
91 // `absl::Hash`
92 // -----------------------------------------------------------------------------
93 //
94 // `absl::Hash<T>` is a convenient general-purpose hash functor for any type `T`
95 // satisfying any of the following conditions (in order):
96 //
97 // * T is an arithmetic or pointer type
98 // * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary
99 // hash state `H`.
100 // - T defines a specialization of `std::hash<T>`
101 //
102 // `absl::Hash` intrinsically supports the following types:
103 //
104 // * All integral types (including bool)
105 // * All enum types
106 // * All floating-point types (although hashing them is discouraged)
107 // * All pointer types, including nullptr_t
108 // * std::pair<T1, T2>, if T1 and T2 are hashable
109 // * std::tuple<Ts...>, if all the Ts... are hashable
110 // * std::unique_ptr and std::shared_ptr
111 // * All string-like types including:
112 // * absl::Cord
113 // * std::string (as well as any instance of std::basic_string that
114 // uses one of {char, wchar_t, char16_t, char32_t} and its associated
115 // std::char_traits)
116 // * std::string_view (as well as any instance of std::basic_string_view
117 // that uses one of {char, wchar_t, char16_t, char32_t} and its associated
118 // std::char_traits)
119 // * All the standard sequence containers (provided the elements are hashable)
120 // * All the standard associative containers (provided the elements are
121 // hashable)
122 // * absl types such as the following:
123 // * absl::string_view
124 // * absl::uint128
125 // * absl::Time, absl::Duration, and absl::TimeZone
126 // * absl containers (provided the elements are hashable) such as the
127 // following:
128 // * absl::flat_hash_set, absl::node_hash_set, absl::btree_set
129 // * absl::flat_hash_map, absl::node_hash_map, absl::btree_map
130 // * absl::btree_multiset, absl::btree_multimap
131 // * absl::InlinedVector
132 // * absl::FixedArray
133 //
134 // When absl::Hash is used to hash an unordered container with a custom hash
135 // functor, the elements are hashed using default absl::Hash semantics, not
136 // the custom hash functor. This is consistent with the behavior of
137 // operator==() on unordered containers, which compares elements pairwise with
138 // operator==() rather than the custom equality functor. It is usually a
139 // mistake to use either operator==() or absl::Hash on unordered collections
140 // that use functors incompatible with operator==() equality.
141 //
142 // Note: the list above is not meant to be exhaustive. Additional type support
143 // may be added, in which case the above list will be updated.
144 //
145 // -----------------------------------------------------------------------------
146 // absl::Hash Invocation Evaluation
147 // -----------------------------------------------------------------------------
148 //
149 // When invoked, `absl::Hash<T>` searches for supplied hash functions in the
150 // following order:
151 //
152 // * Natively supported types out of the box (see above)
153 // * Types for which an `AbslHashValue()` overload is provided (such as
154 // user-defined types). See "Adding Type Support to `absl::Hash`" below.
155 // * Types which define a `std::hash<T>` specialization
156 //
157 // The fallback to legacy hash functions exists mainly for backwards
158 // compatibility. If you have a choice, prefer defining an `AbslHashValue`
159 // overload instead of specializing any legacy hash functors.
160 //
161 // -----------------------------------------------------------------------------
162 // The Hash State Concept, and using `HashState` for Type Erasure
163 // -----------------------------------------------------------------------------
164 //
165 // The `absl::Hash` framework relies on the Concept of a "hash state." Such a
166 // hash state is used in several places:
167 //
168 // * Within existing implementations of `absl::Hash<T>` to store the hashed
169 // state of an object. Note that it is up to the implementation how it stores
170 // such state. A hash table, for example, may mix the state to produce an
171 // integer value; a testing framework may simply hold a vector of that state.
172 // * Within implementations of `AbslHashValue()` used to extend user-defined
173 // types. (See "Adding Type Support to absl::Hash" below.)
174 // * Inside a `HashState`, providing type erasure for the concept of a hash
175 // state, which you can use to extend the `absl::Hash` framework for types
176 // that are otherwise difficult to extend using `AbslHashValue()`. (See the
177 // `HashState` class below.)
178 //
179 // The "hash state" concept contains three member functions for mixing hash
180 // state:
181 //
182 // * `H::combine(state, values...)`
183 //
184 // Combines an arbitrary number of values into a hash state, returning the
185 // updated state. Note that the existing hash state is move-only and must be
186 // passed by value.
187 //
188 // Each of the value types T must be hashable by H.
189 //
190 // NOTE:
191 //
192 // state = H::combine(std::move(state), value1, value2, value3);
193 //
194 // must be guaranteed to produce the same hash expansion as
195 //
196 // state = H::combine(std::move(state), value1);
197 // state = H::combine(std::move(state), value2);
198 // state = H::combine(std::move(state), value3);
199 //
200 // * `H::combine_contiguous(state, data, size)`
201 //
202 // Combines a contiguous array of `size` elements into a hash state,
203 // returning the updated state. Note that the existing hash state is
204 // move-only and must be passed by value.
205 //
206 // NOTE:
207 //
208 // state = H::combine_contiguous(std::move(state), data, size);
209 //
210 // need NOT be guaranteed to produce the same hash expansion as a loop
211 // (it may perform internal optimizations). If you need this guarantee, use a
212 // loop instead.
213 //
214 // * `H::combine_unordered(state, begin, end)`
215 //
216 // Combines a set of elements denoted by an iterator pair into a hash
217 // state, returning the updated state. Note that the existing hash
218 // state is move-only and must be passed by value.
219 //
220 // Unlike the other two methods, the hashing is order-independent.
221 // This can be used to hash unordered collections.
222 //
223 // -----------------------------------------------------------------------------
224 // Adding Type Support to `absl::Hash`
225 // -----------------------------------------------------------------------------
226 //
227 // To add support for your user-defined type, add a proper `AbslHashValue()`
228 // overload as a free (non-member) function. The overload will take an
229 // existing hash state and should combine that state with state from the type.
230 //
231 // Example:
232 //
233 // template <typename H>
234 // H AbslHashValue(H state, const MyType& v) {
235 // return H::combine(std::move(state), v.field1, ..., v.fieldN);
236 // }
237 //
238 // where `(field1, ..., fieldN)` are the members you would use on your
239 // `operator==` to define equality.
240 //
241 // Notice that `AbslHashValue` is not a class member, but an ordinary function.
242 // An `AbslHashValue` overload for a type should only be declared in the same
243 // file and namespace as said type. The proper `AbslHashValue` implementation
244 // for a given type will be discovered via ADL.
245 //
246 // Note: unlike `std::hash', `absl::Hash` should never be specialized. It must
247 // only be extended by adding `AbslHashValue()` overloads.
248 //
249 template <typename T>
250 using Hash = absl::hash_internal::Hash<T>;
251
252 // HashOf
253 //
254 // absl::HashOf() is a helper that generates a hash from the values of its
255 // arguments. It dispatches to absl::Hash directly, as follows:
256 // * HashOf(t) == absl::Hash<T>{}(t)
257 // * HashOf(a, b, c) == HashOf(std::make_tuple(a, b, c))
258 //
259 // HashOf(a1, a2, ...) == HashOf(b1, b2, ...) is guaranteed when
260 // * The argument lists have pairwise identical C++ types
261 // * a1 == b1 && a2 == b2 && ...
262 //
263 // The requirement that the arguments match in both type and value is critical.
264 // It means that `a == b` does not necessarily imply `HashOf(a) == HashOf(b)` if
265 // `a` and `b` have different types. For example, `HashOf(2) != HashOf(2.0)`.
266 template <int&... ExplicitArgumentBarrier, typename... Types>
HashOf(const Types &...values)267 size_t HashOf(const Types&... values) {
268 auto tuple = std::tie(values...);
269 return absl::Hash<decltype(tuple)>{}(tuple);
270 }
271
272 // HashState
273 //
274 // A type erased version of the hash state concept, for use in user-defined
275 // `AbslHashValue` implementations that can't use templates (such as PImpl
276 // classes, virtual functions, etc.). The type erasure adds overhead so it
277 // should be avoided unless necessary.
278 //
279 // Note: This wrapper will only erase calls to
280 // combine_contiguous(H, const unsigned char*, size_t)
281 // RunCombineUnordered(H, CombinerF)
282 //
283 // All other calls will be handled internally and will not invoke overloads
284 // provided by the wrapped class.
285 //
286 // Users of this class should still define a template `AbslHashValue` function,
287 // but can use `absl::HashState::Create(&state)` to erase the type of the hash
288 // state and dispatch to their private hashing logic.
289 //
290 // This state can be used like any other hash state. In particular, you can call
291 // `HashState::combine()` and `HashState::combine_contiguous()` on it.
292 //
293 // Example:
294 //
295 // class Interface {
296 // public:
297 // template <typename H>
298 // friend H AbslHashValue(H state, const Interface& value) {
299 // state = H::combine(std::move(state), std::type_index(typeid(*this)));
300 // value.HashValue(absl::HashState::Create(&state));
301 // return state;
302 // }
303 // private:
304 // virtual void HashValue(absl::HashState state) const = 0;
305 // };
306 //
307 // class Impl : Interface {
308 // private:
309 // void HashValue(absl::HashState state) const override {
310 // absl::HashState::combine(std::move(state), v1_, v2_);
311 // }
312 // int v1_;
313 // std::string v2_;
314 // };
315 class HashState : public hash_internal::HashStateBase<HashState> {
316 public:
317 // HashState::Create()
318 //
319 // Create a new `HashState` instance that wraps `state`. All calls to
320 // `combine()` and `combine_contiguous()` on the new instance will be
321 // redirected to the original `state` object. The `state` object must outlive
322 // the `HashState` instance.
323 template <typename T>
Create(T * state)324 static HashState Create(T* state) {
325 HashState s;
326 s.Init(state);
327 return s;
328 }
329
330 HashState(const HashState&) = delete;
331 HashState& operator=(const HashState&) = delete;
332 HashState(HashState&&) = default;
333 HashState& operator=(HashState&&) = default;
334
335 // HashState::combine()
336 //
337 // Combines an arbitrary number of values into a hash state, returning the
338 // updated state.
339 using HashState::HashStateBase::combine;
340
341 // HashState::combine_contiguous()
342 //
343 // Combines a contiguous array of `size` elements into a hash state, returning
344 // the updated state.
combine_contiguous(HashState hash_state,const unsigned char * first,size_t size)345 static HashState combine_contiguous(HashState hash_state,
346 const unsigned char* first, size_t size) {
347 hash_state.combine_contiguous_(hash_state.state_, first, size);
348 return hash_state;
349 }
350 using HashState::HashStateBase::combine_contiguous;
351
352 private:
353 HashState() = default;
354
355 friend class HashState::HashStateBase;
356
357 template <typename T>
CombineContiguousImpl(void * p,const unsigned char * first,size_t size)358 static void CombineContiguousImpl(void* p, const unsigned char* first,
359 size_t size) {
360 T& state = *static_cast<T*>(p);
361 state = T::combine_contiguous(std::move(state), first, size);
362 }
363
364 template <typename T>
Init(T * state)365 void Init(T* state) {
366 state_ = state;
367 combine_contiguous_ = &CombineContiguousImpl<T>;
368 run_combine_unordered_ = &RunCombineUnorderedImpl<T>;
369 }
370
371 template <typename HS>
372 struct CombineUnorderedInvoker {
373 template <typename T, typename ConsumerT>
operatorCombineUnorderedInvoker374 void operator()(T inner_state, ConsumerT inner_cb) {
375 f(HashState::Create(&inner_state),
376 [&](HashState& inner_erased) { inner_cb(inner_erased.Real<T>()); });
377 }
378
379 absl::FunctionRef<void(HS, absl::FunctionRef<void(HS&)>)> f;
380 };
381
382 template <typename T>
RunCombineUnorderedImpl(HashState state,absl::FunctionRef<void (HashState,absl::FunctionRef<void (HashState &)>)> f)383 static HashState RunCombineUnorderedImpl(
384 HashState state,
385 absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>
386 f) {
387 // Note that this implementation assumes that inner_state and outer_state
388 // are the same type. This isn't true in the SpyHash case, but SpyHash
389 // types are move-convertible to each other, so this still works.
390 T& real_state = state.Real<T>();
391 real_state = T::RunCombineUnordered(
392 std::move(real_state), CombineUnorderedInvoker<HashState>{f});
393 return state;
394 }
395
396 template <typename CombinerT>
RunCombineUnordered(HashState state,CombinerT combiner)397 static HashState RunCombineUnordered(HashState state, CombinerT combiner) {
398 auto* run = state.run_combine_unordered_;
399 return run(std::move(state), std::ref(combiner));
400 }
401
402 // Do not erase an already erased state.
Init(HashState * state)403 void Init(HashState* state) {
404 state_ = state->state_;
405 combine_contiguous_ = state->combine_contiguous_;
406 run_combine_unordered_ = state->run_combine_unordered_;
407 }
408
409 template <typename T>
Real()410 T& Real() {
411 return *static_cast<T*>(state_);
412 }
413
414 void* state_;
415 void (*combine_contiguous_)(void*, const unsigned char*, size_t);
416 HashState (*run_combine_unordered_)(
417 HashState state,
418 absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>);
419 };
420
421 ABSL_NAMESPACE_END
422 } // namespace absl
423
424 #endif // ABSL_HASH_HASH_H_
425