1 // Copyright 2022 The Abseil Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // https://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 // 15 // ----------------------------------------------------------------------------- 16 // File: any_invocable.h 17 // ----------------------------------------------------------------------------- 18 // 19 // This header file defines an `absl::AnyInvocable` type that assumes ownership 20 // and wraps an object of an invocable type. (Invocable types adhere to the 21 // concept specified in https://en.cppreference.com/w/cpp/concepts/invocable.) 22 // 23 // In general, prefer `absl::AnyInvocable` when you need a type-erased 24 // function parameter that needs to take ownership of the type. 25 // 26 // NOTE: `absl::AnyInvocable` is similar to the C++23 `std::move_only_function` 27 // abstraction, but has a slightly different API and is not designed to be a 28 // drop-in replacement or C++11-compatible backfill of that type. 29 // 30 // Credits to Matt Calabrese (https://github.com/mattcalabrese) for the original 31 // implementation. 32 33 #ifndef ABSL_FUNCTIONAL_ANY_INVOCABLE_H_ 34 #define ABSL_FUNCTIONAL_ANY_INVOCABLE_H_ 35 36 #include <cstddef> 37 #include <functional> 38 #include <initializer_list> 39 #include <type_traits> 40 #include <utility> 41 42 #include "absl/base/config.h" 43 #include "absl/functional/internal/any_invocable.h" 44 #include "absl/meta/type_traits.h" 45 #include "absl/utility/utility.h" 46 47 namespace absl { 48 ABSL_NAMESPACE_BEGIN 49 50 // absl::AnyInvocable 51 // 52 // `absl::AnyInvocable` is a functional wrapper type, like `std::function`, that 53 // assumes ownership of an invocable object. Unlike `std::function`, an 54 // `absl::AnyInvocable` is more type-safe and provides the following additional 55 // benefits: 56 // 57 // * Properly adheres to const correctness of the underlying type 58 // * Is move-only so avoids concurrency problems with copied invocables and 59 // unnecessary copies in general. 60 // * Supports reference qualifiers allowing it to perform unique actions (noted 61 // below). 62 // 63 // `absl::AnyInvocable` is a template, and an `absl::AnyInvocable` instantiation 64 // may wrap any invocable object with a compatible function signature, e.g. 65 // having arguments and return types convertible to types matching the 66 // `absl::AnyInvocable` signature, and also matching any stated reference 67 // qualifiers, as long as that type is moveable. It therefore provides broad 68 // type erasure for functional objects. 69 // 70 // An `absl::AnyInvocable` is typically used as a type-erased function parameter 71 // for accepting various functional objects: 72 // 73 // // Define a function taking an AnyInvocable parameter. 74 // void my_func(absl::AnyInvocable<int()> f) { 75 // ... 76 // }; 77 // 78 // // That function can accept any invocable type: 79 // 80 // // Accept a function reference. We don't need to move a reference. 81 // int func1() { return 0; }; 82 // my_func(func1); 83 // 84 // // Accept a lambda. We use std::move here because otherwise my_func would 85 // // copy the lambda. 86 // auto lambda = []() { return 0; }; 87 // my_func(std::move(lambda)); 88 // 89 // // Accept a function pointer. We don't need to move a function pointer. 90 // func2 = &func1; 91 // my_func(func2); 92 // 93 // // Accept an std::function by moving it. Note that the lambda is copyable 94 // // (satisfying std::function requirements) and moveable (satisfying 95 // // absl::AnyInvocable requirements). 96 // std::function<int()> func6 = []() { return 0; }; 97 // my_func(std::move(func6)); 98 // 99 // `AnyInvocable` also properly respects `const` qualifiers, reference 100 // qualifiers, and the `noexcept` specification (only in C++ 17 and beyond) as 101 // part of the user-specified function type (e.g. 102 // `AnyInvocable<void() const && noexcept>`). These qualifiers will be applied 103 // to the `AnyInvocable` object's `operator()`, and the underlying invocable 104 // must be compatible with those qualifiers. 105 // 106 // Comparison of const and non-const function types: 107 // 108 // // Store a closure inside of `func` with the function type `int()`. 109 // // Note that we have made `func` itself `const`. 110 // const AnyInvocable<int()> func = [](){ return 0; }; 111 // 112 // func(); // Compile-error: the passed type `int()` isn't `const`. 113 // 114 // // Store a closure inside of `const_func` with the function type 115 // // `int() const`. 116 // // Note that we have also made `const_func` itself `const`. 117 // const AnyInvocable<int() const> const_func = [](){ return 0; }; 118 // 119 // const_func(); // Fine: `int() const` is `const`. 120 // 121 // In the above example, the call `func()` would have compiled if 122 // `std::function` were used even though the types are not const compatible. 123 // This is a bug, and using `absl::AnyInvocable` properly detects that bug. 124 // 125 // In addition to affecting the signature of `operator()`, the `const` and 126 // reference qualifiers of the function type also appropriately constrain which 127 // kinds of invocable objects you are allowed to place into the `AnyInvocable` 128 // instance. If you specify a function type that is const-qualified, then 129 // anything that you attempt to put into the `AnyInvocable` must be callable on 130 // a `const` instance of that type. 131 // 132 // Constraint example: 133 // 134 // // Fine because the lambda is callable when `const`. 135 // AnyInvocable<int() const> func = [=](){ return 0; }; 136 // 137 // // This is a compile-error because the lambda isn't callable when `const`. 138 // AnyInvocable<int() const> error = [=]() mutable { return 0; }; 139 // 140 // An `&&` qualifier can be used to express that an `absl::AnyInvocable` 141 // instance should be invoked at most once: 142 // 143 // // Invokes `continuation` with the logical result of an operation when 144 // // that operation completes (common in asynchronous code). 145 // void CallOnCompletion(AnyInvocable<void(int)&&> continuation) { 146 // int result_of_foo = foo(); 147 // 148 // // `std::move` is required because the `operator()` of `continuation` is 149 // // rvalue-reference qualified. 150 // std::move(continuation)(result_of_foo); 151 // } 152 // 153 // Attempting to call `absl::AnyInvocable` multiple times in such a case 154 // results in undefined behavior. 155 // 156 // Invoking an empty `absl::AnyInvocable` results in undefined behavior: 157 // 158 // // Create an empty instance using the default constructor. 159 // AnyInvocable<void()> empty; 160 // empty(); // WARNING: Undefined behavior! 161 template <class Sig> 162 class AnyInvocable : private internal_any_invocable::Impl<Sig> { 163 private: 164 static_assert( 165 std::is_function<Sig>::value, 166 "The template argument of AnyInvocable must be a function type."); 167 168 using Impl = internal_any_invocable::Impl<Sig>; 169 170 public: 171 // The return type of Sig 172 using result_type = typename Impl::result_type; 173 174 // Constructors 175 176 // Constructs the `AnyInvocable` in an empty state. 177 // Invoking it results in undefined behavior. 178 AnyInvocable() noexcept = default; AnyInvocable(std::nullptr_t)179 AnyInvocable(std::nullptr_t) noexcept {} // NOLINT 180 181 // Constructs the `AnyInvocable` from an existing `AnyInvocable` by a move. 182 // Note that `f` is not guaranteed to be empty after move-construction, 183 // although it may be. 184 AnyInvocable(AnyInvocable&& /*f*/) noexcept = default; 185 186 // Constructs an `AnyInvocable` from an invocable object. 187 // 188 // Upon construction, `*this` is only empty if `f` is a function pointer or 189 // member pointer type and is null, or if `f` is an `AnyInvocable` that is 190 // empty. 191 template <class F, typename = absl::enable_if_t< 192 internal_any_invocable::CanConvert<Sig, F>::value>> AnyInvocable(F && f)193 AnyInvocable(F&& f) // NOLINT 194 : Impl(internal_any_invocable::ConversionConstruct(), 195 std::forward<F>(f)) {} 196 197 // Constructs an `AnyInvocable` that holds an invocable object of type `T`, 198 // which is constructed in-place from the given arguments. 199 // 200 // Example: 201 // 202 // AnyInvocable<int(int)> func( 203 // absl::in_place_type<PossiblyImmovableType>, arg1, arg2); 204 // 205 template <class T, class... Args, 206 typename = absl::enable_if_t< 207 internal_any_invocable::CanEmplace<Sig, T, Args...>::value>> AnyInvocable(absl::in_place_type_t<T>,Args &&...args)208 explicit AnyInvocable(absl::in_place_type_t<T>, Args&&... args) 209 : Impl(absl::in_place_type<absl::decay_t<T>>, 210 std::forward<Args>(args)...) { 211 static_assert(std::is_same<T, absl::decay_t<T>>::value, 212 "The explicit template argument of in_place_type is required " 213 "to be an unqualified object type."); 214 } 215 216 // Overload of the above constructor to support list-initialization. 217 template <class T, class U, class... Args, 218 typename = absl::enable_if_t<internal_any_invocable::CanEmplace< 219 Sig, T, std::initializer_list<U>&, Args...>::value>> AnyInvocable(absl::in_place_type_t<T>,std::initializer_list<U> ilist,Args &&...args)220 explicit AnyInvocable(absl::in_place_type_t<T>, 221 std::initializer_list<U> ilist, Args&&... args) 222 : Impl(absl::in_place_type<absl::decay_t<T>>, ilist, 223 std::forward<Args>(args)...) { 224 static_assert(std::is_same<T, absl::decay_t<T>>::value, 225 "The explicit template argument of in_place_type is required " 226 "to be an unqualified object type."); 227 } 228 229 // Assignment Operators 230 231 // Assigns an `AnyInvocable` through move-assignment. 232 // Note that `f` is not guaranteed to be empty after move-assignment 233 // although it may be. 234 AnyInvocable& operator=(AnyInvocable&& /*f*/) noexcept = default; 235 236 // Assigns an `AnyInvocable` from a nullptr, clearing the `AnyInvocable`. If 237 // not empty, destroys the target, putting `*this` into an empty state. 238 AnyInvocable& operator=(std::nullptr_t) noexcept { 239 this->Clear(); 240 return *this; 241 } 242 243 // Assigns an `AnyInvocable` from an existing `AnyInvocable` instance. 244 // 245 // Upon assignment, `*this` is only empty if `f` is a function pointer or 246 // member pointer type and is null, or if `f` is an `AnyInvocable` that is 247 // empty. 248 template <class F, typename = absl::enable_if_t< 249 internal_any_invocable::CanAssign<Sig, F>::value>> 250 AnyInvocable& operator=(F&& f) { 251 *this = AnyInvocable(std::forward<F>(f)); 252 return *this; 253 } 254 255 // Assigns an `AnyInvocable` from a reference to an invocable object. 256 // Upon assignment, stores a reference to the invocable object in the 257 // `AnyInvocable` instance. 258 template < 259 class F, 260 typename = absl::enable_if_t< 261 internal_any_invocable::CanAssignReferenceWrapper<Sig, F>::value>> 262 AnyInvocable& operator=(std::reference_wrapper<F> f) noexcept { 263 *this = AnyInvocable(f); 264 return *this; 265 } 266 267 // Destructor 268 269 // If not empty, destroys the target. 270 ~AnyInvocable() = default; 271 272 // absl::AnyInvocable::swap() 273 // 274 // Exchanges the targets of `*this` and `other`. swap(AnyInvocable & other)275 void swap(AnyInvocable& other) noexcept { std::swap(*this, other); } 276 277 // absl::AnyInvocable::operator bool() 278 // 279 // Returns `true` if `*this` is not empty. 280 // 281 // WARNING: An `AnyInvocable` that wraps an empty `std::function` is not 282 // itself empty. This behavior is consistent with the standard equivalent 283 // `std::move_only_function`. 284 // 285 // In other words: 286 // std::function<void()> f; // empty 287 // absl::AnyInvocable<void()> a = std::move(f); // not empty 288 // 289 // Invoking an empty `AnyInvocable` results in undefined behavior. 290 explicit operator bool() const noexcept { return this->HasValue(); } 291 292 // Invokes the target object of `*this`. `*this` must not be empty. 293 // 294 // Note: The signature of this function call operator is the same as the 295 // template parameter `Sig`. 296 using Impl::operator(); 297 298 // Equality operators 299 300 // Returns `true` if `*this` is empty. 301 friend bool operator==(const AnyInvocable& f, std::nullptr_t) noexcept { 302 return !f.HasValue(); 303 } 304 305 // Returns `true` if `*this` is empty. 306 friend bool operator==(std::nullptr_t, const AnyInvocable& f) noexcept { 307 return !f.HasValue(); 308 } 309 310 // Returns `false` if `*this` is empty. 311 friend bool operator!=(const AnyInvocable& f, std::nullptr_t) noexcept { 312 return f.HasValue(); 313 } 314 315 // Returns `false` if `*this` is empty. 316 friend bool operator!=(std::nullptr_t, const AnyInvocable& f) noexcept { 317 return f.HasValue(); 318 } 319 320 // swap() 321 // 322 // Exchanges the targets of `f1` and `f2`. swap(AnyInvocable & f1,AnyInvocable & f2)323 friend void swap(AnyInvocable& f1, AnyInvocable& f2) noexcept { f1.swap(f2); } 324 325 private: 326 // Friending other instantiations is necessary for conversions. 327 template <bool /*SigIsNoexcept*/, class /*ReturnType*/, class... /*P*/> 328 friend class internal_any_invocable::CoreImpl; 329 }; 330 331 ABSL_NAMESPACE_END 332 } // namespace absl 333 334 #endif // ABSL_FUNCTIONAL_ANY_INVOCABLE_H_ 335