xref: /aosp_15_r20/external/abseil-cpp/absl/container/node_hash_map.h (revision 9356374a3709195abf420251b3e825997ff56c0f)
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `node_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`. However, if you need pointer stability and cannot store
29 // a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
30 // valid alternative. As well, if you are migrating your code from using
31 // `std::unordered_map`, a `node_hash_map` provides a more straightforward
32 // migration, because it guarantees pointer stability. Consider migrating to
33 // `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
34 // upon further review.
35 //
36 // `node_hash_map` is not exception-safe.
37 
38 #ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
39 #define ABSL_CONTAINER_NODE_HASH_MAP_H_
40 
41 #include <cstddef>
42 #include <memory>
43 #include <type_traits>
44 #include <utility>
45 
46 #include "absl/algorithm/container.h"
47 #include "absl/base/attributes.h"
48 #include "absl/container/hash_container_defaults.h"
49 #include "absl/container/internal/container_memory.h"
50 #include "absl/container/internal/node_slot_policy.h"
51 #include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export
52 #include "absl/memory/memory.h"
53 #include "absl/meta/type_traits.h"
54 
55 namespace absl {
56 ABSL_NAMESPACE_BEGIN
57 namespace container_internal {
58 template <class Key, class Value>
59 class NodeHashMapPolicy;
60 }  // namespace container_internal
61 
62 // -----------------------------------------------------------------------------
63 // absl::node_hash_map
64 // -----------------------------------------------------------------------------
65 //
66 // An `absl::node_hash_map<K, V>` is an unordered associative container which
67 // has been optimized for both speed and memory footprint in most common use
68 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
69 // the following notable differences:
70 //
71 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
72 //   `insert()`, provided that the map is provided a compatible heterogeneous
73 //   hashing function and equality operator. See below for details.
74 // * Contains a `capacity()` member function indicating the number of element
75 //   slots (open, deleted, and empty) within the hash map.
76 // * Returns `void` from the `erase(iterator)` overload.
77 //
78 // By default, `node_hash_map` uses the `absl::Hash` hashing framework.
79 // All fundamental and Abseil types that support the `absl::Hash` framework have
80 // a compatible equality operator for comparing insertions into `node_hash_map`.
81 // If your type is not yet supported by the `absl::Hash` framework, see
82 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
83 // types.
84 //
85 // Using `absl::node_hash_map` at interface boundaries in dynamically loaded
86 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
87 // be randomized across dynamically loaded libraries.
88 //
89 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
90 // parameters can be used or `T` should have public inner types
91 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
92 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
93 // well-formed. Both types are basically functors:
94 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
95 // for the given `val`.
96 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
97 // if `lhs` is equal to `rhs`.
98 //
99 // In most cases `T` needs only to provide the `absl_container_hash`. In this
100 // case `std::equal_to<void>` will be used instead of `eq` part.
101 //
102 // Example:
103 //
104 //   // Create a node hash map of three strings (that map to strings)
105 //   absl::node_hash_map<std::string, std::string> ducks =
106 //     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
107 //
108 //  // Insert a new element into the node hash map
109 //  ducks.insert({"d", "donald"}};
110 //
111 //  // Force a rehash of the node hash map
112 //  ducks.rehash(0);
113 //
114 //  // Find the element with the key "b"
115 //  std::string search_key = "b";
116 //  auto result = ducks.find(search_key);
117 //  if (result != ducks.end()) {
118 //    std::cout << "Result: " << result->second << std::endl;
119 //  }
120 template <class Key, class Value, class Hash = DefaultHashContainerHash<Key>,
121           class Eq = DefaultHashContainerEq<Key>,
122           class Alloc = std::allocator<std::pair<const Key, Value>>>
123 class ABSL_INTERNAL_ATTRIBUTE_OWNER node_hash_map
124     : public absl::container_internal::raw_hash_map<
125           absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
126           Alloc> {
127   using Base = typename node_hash_map::raw_hash_map;
128 
129  public:
130   // Constructors and Assignment Operators
131   //
132   // A node_hash_map supports the same overload set as `std::unordered_map`
133   // for construction and assignment:
134   //
135   // *  Default constructor
136   //
137   //    // No allocation for the table's elements is made.
138   //    absl::node_hash_map<int, std::string> map1;
139   //
140   // * Initializer List constructor
141   //
142   //   absl::node_hash_map<int, std::string> map2 =
143   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
144   //
145   // * Copy constructor
146   //
147   //   absl::node_hash_map<int, std::string> map3(map2);
148   //
149   // * Copy assignment operator
150   //
151   //  // Hash functor and Comparator are copied as well
152   //  absl::node_hash_map<int, std::string> map4;
153   //  map4 = map3;
154   //
155   // * Move constructor
156   //
157   //   // Move is guaranteed efficient
158   //   absl::node_hash_map<int, std::string> map5(std::move(map4));
159   //
160   // * Move assignment operator
161   //
162   //   // May be efficient if allocators are compatible
163   //   absl::node_hash_map<int, std::string> map6;
164   //   map6 = std::move(map5);
165   //
166   // * Range constructor
167   //
168   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
169   //   absl::node_hash_map<int, std::string> map7(v.begin(), v.end());
node_hash_map()170   node_hash_map() {}
171   using Base::Base;
172 
173   // node_hash_map::begin()
174   //
175   // Returns an iterator to the beginning of the `node_hash_map`.
176   using Base::begin;
177 
178   // node_hash_map::cbegin()
179   //
180   // Returns a const iterator to the beginning of the `node_hash_map`.
181   using Base::cbegin;
182 
183   // node_hash_map::cend()
184   //
185   // Returns a const iterator to the end of the `node_hash_map`.
186   using Base::cend;
187 
188   // node_hash_map::end()
189   //
190   // Returns an iterator to the end of the `node_hash_map`.
191   using Base::end;
192 
193   // node_hash_map::capacity()
194   //
195   // Returns the number of element slots (assigned, deleted, and empty)
196   // available within the `node_hash_map`.
197   //
198   // NOTE: this member function is particular to `absl::node_hash_map` and is
199   // not provided in the `std::unordered_map` API.
200   using Base::capacity;
201 
202   // node_hash_map::empty()
203   //
204   // Returns whether or not the `node_hash_map` is empty.
205   using Base::empty;
206 
207   // node_hash_map::max_size()
208   //
209   // Returns the largest theoretical possible number of elements within a
210   // `node_hash_map` under current memory constraints. This value can be thought
211   // of as the largest value of `std::distance(begin(), end())` for a
212   // `node_hash_map<K, V>`.
213   using Base::max_size;
214 
215   // node_hash_map::size()
216   //
217   // Returns the number of elements currently within the `node_hash_map`.
218   using Base::size;
219 
220   // node_hash_map::clear()
221   //
222   // Removes all elements from the `node_hash_map`. Invalidates any references,
223   // pointers, or iterators referring to contained elements.
224   //
225   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
226   // the underlying buffer call `erase(begin(), end())`.
227   using Base::clear;
228 
229   // node_hash_map::erase()
230   //
231   // Erases elements within the `node_hash_map`. Erasing does not trigger a
232   // rehash. Overloads are listed below.
233   //
234   // void erase(const_iterator pos):
235   //
236   //   Erases the element at `position` of the `node_hash_map`, returning
237   //   `void`.
238   //
239   //   NOTE: this return behavior is different than that of STL containers in
240   //   general and `std::unordered_map` in particular.
241   //
242   // iterator erase(const_iterator first, const_iterator last):
243   //
244   //   Erases the elements in the open interval [`first`, `last`), returning an
245   //   iterator pointing to `last`. The special case of calling
246   //   `erase(begin(), end())` resets the reserved growth such that if
247   //   `reserve(N)` has previously been called and there has been no intervening
248   //   call to `clear()`, then after calling `erase(begin(), end())`, it is safe
249   //   to assume that inserting N elements will not cause a rehash.
250   //
251   // size_type erase(const key_type& key):
252   //
253   //   Erases the element with the matching key, if it exists, returning the
254   //   number of elements erased (0 or 1).
255   using Base::erase;
256 
257   // node_hash_map::insert()
258   //
259   // Inserts an element of the specified value into the `node_hash_map`,
260   // returning an iterator pointing to the newly inserted element, provided that
261   // an element with the given key does not already exist. If rehashing occurs
262   // due to the insertion, all iterators are invalidated. Overloads are listed
263   // below.
264   //
265   // std::pair<iterator,bool> insert(const init_type& value):
266   //
267   //   Inserts a value into the `node_hash_map`. Returns a pair consisting of an
268   //   iterator to the inserted element (or to the element that prevented the
269   //   insertion) and a `bool` denoting whether the insertion took place.
270   //
271   // std::pair<iterator,bool> insert(T&& value):
272   // std::pair<iterator,bool> insert(init_type&& value):
273   //
274   //   Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
275   //   consisting of an iterator to the inserted element (or to the element that
276   //   prevented the insertion) and a `bool` denoting whether the insertion took
277   //   place.
278   //
279   // iterator insert(const_iterator hint, const init_type& value):
280   // iterator insert(const_iterator hint, T&& value):
281   // iterator insert(const_iterator hint, init_type&& value);
282   //
283   //   Inserts a value, using the position of `hint` as a non-binding suggestion
284   //   for where to begin the insertion search. Returns an iterator to the
285   //   inserted element, or to the existing element that prevented the
286   //   insertion.
287   //
288   // void insert(InputIterator first, InputIterator last):
289   //
290   //   Inserts a range of values [`first`, `last`).
291   //
292   //   NOTE: Although the STL does not specify which element may be inserted if
293   //   multiple keys compare equivalently, for `node_hash_map` we guarantee the
294   //   first match is inserted.
295   //
296   // void insert(std::initializer_list<init_type> ilist):
297   //
298   //   Inserts the elements within the initializer list `ilist`.
299   //
300   //   NOTE: Although the STL does not specify which element may be inserted if
301   //   multiple keys compare equivalently within the initializer list, for
302   //   `node_hash_map` we guarantee the first match is inserted.
303   using Base::insert;
304 
305   // node_hash_map::insert_or_assign()
306   //
307   // Inserts an element of the specified value into the `node_hash_map` provided
308   // that a value with the given key does not already exist, or replaces it with
309   // the element value if a key for that value already exists, returning an
310   // iterator pointing to the newly inserted element. If rehashing occurs due to
311   // the insertion, all iterators are invalidated. Overloads are listed
312   // below.
313   //
314   // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
315   // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
316   //
317   //   Inserts/Assigns (or moves) the element of the specified key into the
318   //   `node_hash_map`.
319   //
320   // iterator insert_or_assign(const_iterator hint,
321   //                           const init_type& k, T&& obj):
322   // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
323   //
324   //   Inserts/Assigns (or moves) the element of the specified key into the
325   //   `node_hash_map` using the position of `hint` as a non-binding suggestion
326   //   for where to begin the insertion search.
327   using Base::insert_or_assign;
328 
329   // node_hash_map::emplace()
330   //
331   // Inserts an element of the specified value by constructing it in-place
332   // within the `node_hash_map`, provided that no element with the given key
333   // already exists.
334   //
335   // The element may be constructed even if there already is an element with the
336   // key in the container, in which case the newly constructed element will be
337   // destroyed immediately. Prefer `try_emplace()` unless your key is not
338   // copyable or moveable.
339   //
340   // If rehashing occurs due to the insertion, all iterators are invalidated.
341   using Base::emplace;
342 
343   // node_hash_map::emplace_hint()
344   //
345   // Inserts an element of the specified value by constructing it in-place
346   // within the `node_hash_map`, using the position of `hint` as a non-binding
347   // suggestion for where to begin the insertion search, and only inserts
348   // provided that no element with the given key already exists.
349   //
350   // The element may be constructed even if there already is an element with the
351   // key in the container, in which case the newly constructed element will be
352   // destroyed immediately. Prefer `try_emplace()` unless your key is not
353   // copyable or moveable.
354   //
355   // If rehashing occurs due to the insertion, all iterators are invalidated.
356   using Base::emplace_hint;
357 
358   // node_hash_map::try_emplace()
359   //
360   // Inserts an element of the specified value by constructing it in-place
361   // within the `node_hash_map`, provided that no element with the given key
362   // already exists. Unlike `emplace()`, if an element with the given key
363   // already exists, we guarantee that no element is constructed.
364   //
365   // If rehashing occurs due to the insertion, all iterators are invalidated.
366   // Overloads are listed below.
367   //
368   //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
369   //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
370   //
371   // Inserts (via copy or move) the element of the specified key into the
372   // `node_hash_map`.
373   //
374   //   iterator try_emplace(const_iterator hint,
375   //                        const key_type& k, Args&&... args):
376   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
377   //
378   // Inserts (via copy or move) the element of the specified key into the
379   // `node_hash_map` using the position of `hint` as a non-binding suggestion
380   // for where to begin the insertion search.
381   //
382   // All `try_emplace()` overloads make the same guarantees regarding rvalue
383   // arguments as `std::unordered_map::try_emplace()`, namely that these
384   // functions will not move from rvalue arguments if insertions do not happen.
385   using Base::try_emplace;
386 
387   // node_hash_map::extract()
388   //
389   // Extracts the indicated element, erasing it in the process, and returns it
390   // as a C++17-compatible node handle. Overloads are listed below.
391   //
392   // node_type extract(const_iterator position):
393   //
394   //   Extracts the key,value pair of the element at the indicated position and
395   //   returns a node handle owning that extracted data.
396   //
397   // node_type extract(const key_type& x):
398   //
399   //   Extracts the key,value pair of the element with a key matching the passed
400   //   key value and returns a node handle owning that extracted data. If the
401   //   `node_hash_map` does not contain an element with a matching key, this
402   //   function returns an empty node handle.
403   //
404   // NOTE: when compiled in an earlier version of C++ than C++17,
405   // `node_type::key()` returns a const reference to the key instead of a
406   // mutable reference. We cannot safely return a mutable reference without
407   // std::launder (which is not available before C++17).
408   using Base::extract;
409 
410   // node_hash_map::merge()
411   //
412   // Extracts elements from a given `source` node hash map into this
413   // `node_hash_map`. If the destination `node_hash_map` already contains an
414   // element with an equivalent key, that element is not extracted.
415   using Base::merge;
416 
417   // node_hash_map::swap(node_hash_map& other)
418   //
419   // Exchanges the contents of this `node_hash_map` with those of the `other`
420   // node hash map, avoiding invocation of any move, copy, or swap operations on
421   // individual elements.
422   //
423   // All iterators and references on the `node_hash_map` remain valid, excepting
424   // for the past-the-end iterator, which is invalidated.
425   //
426   // `swap()` requires that the node hash map's hashing and key equivalence
427   // functions be Swappable, and are exchanged using unqualified calls to
428   // non-member `swap()`. If the map's allocator has
429   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
430   // set to `true`, the allocators are also exchanged using an unqualified call
431   // to non-member `swap()`; otherwise, the allocators are not swapped.
432   using Base::swap;
433 
434   // node_hash_map::rehash(count)
435   //
436   // Rehashes the `node_hash_map`, setting the number of slots to be at least
437   // the passed value. If the new number of slots increases the load factor more
438   // than the current maximum load factor
439   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
440   // will be at least `size()` / `max_load_factor()`.
441   //
442   // To force a rehash, pass rehash(0).
443   using Base::rehash;
444 
445   // node_hash_map::reserve(count)
446   //
447   // Sets the number of slots in the `node_hash_map` to the number needed to
448   // accommodate at least `count` total elements without exceeding the current
449   // maximum load factor, and may rehash the container if needed.
450   using Base::reserve;
451 
452   // node_hash_map::at()
453   //
454   // Returns a reference to the mapped value of the element with key equivalent
455   // to the passed key.
456   using Base::at;
457 
458   // node_hash_map::contains()
459   //
460   // Determines whether an element with a key comparing equal to the given `key`
461   // exists within the `node_hash_map`, returning `true` if so or `false`
462   // otherwise.
463   using Base::contains;
464 
465   // node_hash_map::count(const Key& key) const
466   //
467   // Returns the number of elements with a key comparing equal to the given
468   // `key` within the `node_hash_map`. note that this function will return
469   // either `1` or `0` since duplicate keys are not allowed within a
470   // `node_hash_map`.
471   using Base::count;
472 
473   // node_hash_map::equal_range()
474   //
475   // Returns a closed range [first, last], defined by a `std::pair` of two
476   // iterators, containing all elements with the passed key in the
477   // `node_hash_map`.
478   using Base::equal_range;
479 
480   // node_hash_map::find()
481   //
482   // Finds an element with the passed `key` within the `node_hash_map`.
483   using Base::find;
484 
485   // node_hash_map::operator[]()
486   //
487   // Returns a reference to the value mapped to the passed key within the
488   // `node_hash_map`, performing an `insert()` if the key does not already
489   // exist. If an insertion occurs and results in a rehashing of the container,
490   // all iterators are invalidated. Otherwise iterators are not affected and
491   // references are not invalidated. Overloads are listed below.
492   //
493   // T& operator[](const Key& key):
494   //
495   //   Inserts an init_type object constructed in-place if the element with the
496   //   given key does not exist.
497   //
498   // T& operator[](Key&& key):
499   //
500   //   Inserts an init_type object constructed in-place provided that an element
501   //   with the given key does not exist.
502   using Base::operator[];
503 
504   // node_hash_map::bucket_count()
505   //
506   // Returns the number of "buckets" within the `node_hash_map`.
507   using Base::bucket_count;
508 
509   // node_hash_map::load_factor()
510   //
511   // Returns the current load factor of the `node_hash_map` (the average number
512   // of slots occupied with a value within the hash map).
513   using Base::load_factor;
514 
515   // node_hash_map::max_load_factor()
516   //
517   // Manages the maximum load factor of the `node_hash_map`. Overloads are
518   // listed below.
519   //
520   // float node_hash_map::max_load_factor()
521   //
522   //   Returns the current maximum load factor of the `node_hash_map`.
523   //
524   // void node_hash_map::max_load_factor(float ml)
525   //
526   //   Sets the maximum load factor of the `node_hash_map` to the passed value.
527   //
528   //   NOTE: This overload is provided only for API compatibility with the STL;
529   //   `node_hash_map` will ignore any set load factor and manage its rehashing
530   //   internally as an implementation detail.
531   using Base::max_load_factor;
532 
533   // node_hash_map::get_allocator()
534   //
535   // Returns the allocator function associated with this `node_hash_map`.
536   using Base::get_allocator;
537 
538   // node_hash_map::hash_function()
539   //
540   // Returns the hashing function used to hash the keys within this
541   // `node_hash_map`.
542   using Base::hash_function;
543 
544   // node_hash_map::key_eq()
545   //
546   // Returns the function used for comparing keys equality.
547   using Base::key_eq;
548 };
549 
550 // erase_if(node_hash_map<>, Pred)
551 //
552 // Erases all elements that satisfy the predicate `pred` from the container `c`.
553 // Returns the number of erased elements.
554 template <typename K, typename V, typename H, typename E, typename A,
555           typename Predicate>
erase_if(node_hash_map<K,V,H,E,A> & c,Predicate pred)556 typename node_hash_map<K, V, H, E, A>::size_type erase_if(
557     node_hash_map<K, V, H, E, A>& c, Predicate pred) {
558   return container_internal::EraseIf(pred, &c);
559 }
560 
561 namespace container_internal {
562 
563 // c_for_each_fast(node_hash_map<>, Function)
564 //
565 // Container-based version of the <algorithm> `std::for_each()` function to
566 // apply a function to a container's elements.
567 // There is no guarantees on the order of the function calls.
568 // Erasure and/or insertion of elements in the function is not allowed.
569 template <typename K, typename V, typename H, typename E, typename A,
570           typename Function>
c_for_each_fast(const node_hash_map<K,V,H,E,A> & c,Function && f)571 decay_t<Function> c_for_each_fast(const node_hash_map<K, V, H, E, A>& c,
572                                   Function&& f) {
573   container_internal::ForEach(f, &c);
574   return f;
575 }
576 template <typename K, typename V, typename H, typename E, typename A,
577           typename Function>
c_for_each_fast(node_hash_map<K,V,H,E,A> & c,Function && f)578 decay_t<Function> c_for_each_fast(node_hash_map<K, V, H, E, A>& c,
579                                   Function&& f) {
580   container_internal::ForEach(f, &c);
581   return f;
582 }
583 template <typename K, typename V, typename H, typename E, typename A,
584           typename Function>
c_for_each_fast(node_hash_map<K,V,H,E,A> && c,Function && f)585 decay_t<Function> c_for_each_fast(node_hash_map<K, V, H, E, A>&& c,
586                                   Function&& f) {
587   container_internal::ForEach(f, &c);
588   return f;
589 }
590 
591 }  // namespace container_internal
592 
593 namespace container_internal {
594 
595 template <class Key, class Value>
596 class NodeHashMapPolicy
597     : public absl::container_internal::node_slot_policy<
598           std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
599   using value_type = std::pair<const Key, Value>;
600 
601  public:
602   using key_type = Key;
603   using mapped_type = Value;
604   using init_type = std::pair</*non const*/ key_type, mapped_type>;
605 
606   template <class Allocator, class... Args>
new_element(Allocator * alloc,Args &&...args)607   static value_type* new_element(Allocator* alloc, Args&&... args) {
608     using PairAlloc = typename absl::allocator_traits<
609         Allocator>::template rebind_alloc<value_type>;
610     PairAlloc pair_alloc(*alloc);
611     value_type* res =
612         absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
613     absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
614                                                  std::forward<Args>(args)...);
615     return res;
616   }
617 
618   template <class Allocator>
delete_element(Allocator * alloc,value_type * pair)619   static void delete_element(Allocator* alloc, value_type* pair) {
620     using PairAlloc = typename absl::allocator_traits<
621         Allocator>::template rebind_alloc<value_type>;
622     PairAlloc pair_alloc(*alloc);
623     absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
624     absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
625   }
626 
627   template <class F, class... Args>
decltype(absl::container_internal::DecomposePair (std::declval<F> (),std::declval<Args> ()...))628   static decltype(absl::container_internal::DecomposePair(
629       std::declval<F>(), std::declval<Args>()...))
630   apply(F&& f, Args&&... args) {
631     return absl::container_internal::DecomposePair(std::forward<F>(f),
632                                                    std::forward<Args>(args)...);
633   }
634 
element_space_used(const value_type *)635   static size_t element_space_used(const value_type*) {
636     return sizeof(value_type);
637   }
638 
value(value_type * elem)639   static Value& value(value_type* elem) { return elem->second; }
value(const value_type * elem)640   static const Value& value(const value_type* elem) { return elem->second; }
641 
642   template <class Hash>
get_hash_slot_fn()643   static constexpr HashSlotFn get_hash_slot_fn() {
644     return memory_internal::IsLayoutCompatible<Key, Value>::value
645                ? &TypeErasedDerefAndApplyToSlotFn<Hash, Key>
646                : nullptr;
647   }
648 };
649 }  // namespace container_internal
650 
651 namespace container_algorithm_internal {
652 
653 // Specialization of trait in absl/algorithm/container.h
654 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
655 struct IsUnorderedContainer<
656     absl::node_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
657 
658 }  // namespace container_algorithm_internal
659 
660 ABSL_NAMESPACE_END
661 }  // namespace absl
662 
663 #endif  // ABSL_CONTAINER_NODE_HASH_MAP_H_
664