1 // Copyright 2019 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: inlined_vector.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file contains the declaration and definition of an "inlined
20 // vector" which behaves in an equivalent fashion to a `std::vector`, except
21 // that storage for small sequences of the vector are provided inline without
22 // requiring any heap allocation.
23 //
24 // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
25 // its template parameters. Instances where `size() <= N` hold contained
26 // elements in inline space. Typically `N` is very small so that sequences that
27 // are expected to be short do not require allocations.
28 //
29 // An `absl::InlinedVector` does not usually require a specific allocator. If
30 // the inlined vector grows beyond its initial constraints, it will need to
31 // allocate (as any normal `std::vector` would). This is usually performed with
32 // the default allocator (defined as `std::allocator<T>`). Optionally, a custom
33 // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
34
35 #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
36 #define ABSL_CONTAINER_INLINED_VECTOR_H_
37
38 #include <algorithm>
39 #include <cstddef>
40 #include <cstdlib>
41 #include <cstring>
42 #include <initializer_list>
43 #include <iterator>
44 #include <memory>
45 #include <type_traits>
46 #include <utility>
47
48 #include "absl/algorithm/algorithm.h"
49 #include "absl/base/internal/throw_delegate.h"
50 #include "absl/base/macros.h"
51 #include "absl/base/optimization.h"
52 #include "absl/base/port.h"
53 #include "absl/container/internal/inlined_vector.h"
54 #include "absl/memory/memory.h"
55 #include "absl/meta/type_traits.h"
56
57 namespace absl {
58 ABSL_NAMESPACE_BEGIN
59 // -----------------------------------------------------------------------------
60 // InlinedVector
61 // -----------------------------------------------------------------------------
62 //
63 // An `absl::InlinedVector` is designed to be a drop-in replacement for
64 // `std::vector` for use cases where the vector's size is sufficiently small
65 // that it can be inlined. If the inlined vector does grow beyond its estimated
66 // capacity, it will trigger an initial allocation on the heap, and will behave
67 // as a `std::vector`. The API of the `absl::InlinedVector` within this file is
68 // designed to cover the same API footprint as covered by `std::vector`.
69 template <typename T, size_t N, typename A = std::allocator<T>>
70 class InlinedVector {
71 static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
72
73 using Storage = inlined_vector_internal::Storage<T, N, A>;
74
75 template <typename TheA>
76 using AllocatorTraits = inlined_vector_internal::AllocatorTraits<TheA>;
77 template <typename TheA>
78 using MoveIterator = inlined_vector_internal::MoveIterator<TheA>;
79 template <typename TheA>
80 using IsMoveAssignOk = inlined_vector_internal::IsMoveAssignOk<TheA>;
81
82 template <typename TheA, typename Iterator>
83 using IteratorValueAdapter =
84 inlined_vector_internal::IteratorValueAdapter<TheA, Iterator>;
85 template <typename TheA>
86 using CopyValueAdapter = inlined_vector_internal::CopyValueAdapter<TheA>;
87 template <typename TheA>
88 using DefaultValueAdapter =
89 inlined_vector_internal::DefaultValueAdapter<TheA>;
90
91 template <typename Iterator>
92 using EnableIfAtLeastForwardIterator = absl::enable_if_t<
93 inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
94 template <typename Iterator>
95 using DisableIfAtLeastForwardIterator = absl::enable_if_t<
96 !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
97
98 using MemcpyPolicy = typename Storage::MemcpyPolicy;
99 using ElementwiseAssignPolicy = typename Storage::ElementwiseAssignPolicy;
100 using ElementwiseConstructPolicy =
101 typename Storage::ElementwiseConstructPolicy;
102 using MoveAssignmentPolicy = typename Storage::MoveAssignmentPolicy;
103
104 public:
105 using allocator_type = A;
106 using value_type = inlined_vector_internal::ValueType<A>;
107 using pointer = inlined_vector_internal::Pointer<A>;
108 using const_pointer = inlined_vector_internal::ConstPointer<A>;
109 using size_type = inlined_vector_internal::SizeType<A>;
110 using difference_type = inlined_vector_internal::DifferenceType<A>;
111 using reference = inlined_vector_internal::Reference<A>;
112 using const_reference = inlined_vector_internal::ConstReference<A>;
113 using iterator = inlined_vector_internal::Iterator<A>;
114 using const_iterator = inlined_vector_internal::ConstIterator<A>;
115 using reverse_iterator = inlined_vector_internal::ReverseIterator<A>;
116 using const_reverse_iterator =
117 inlined_vector_internal::ConstReverseIterator<A>;
118
119 // ---------------------------------------------------------------------------
120 // InlinedVector Constructors and Destructor
121 // ---------------------------------------------------------------------------
122
123 // Creates an empty inlined vector with a value-initialized allocator.
noexcept(noexcept (allocator_type ()))124 InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
125
126 // Creates an empty inlined vector with a copy of `allocator`.
InlinedVector(const allocator_type & allocator)127 explicit InlinedVector(const allocator_type& allocator) noexcept
128 : storage_(allocator) {}
129
130 // Creates an inlined vector with `n` copies of `value_type()`.
131 explicit InlinedVector(size_type n,
132 const allocator_type& allocator = allocator_type())
storage_(allocator)133 : storage_(allocator) {
134 storage_.Initialize(DefaultValueAdapter<A>(), n);
135 }
136
137 // Creates an inlined vector with `n` copies of `v`.
138 InlinedVector(size_type n, const_reference v,
139 const allocator_type& allocator = allocator_type())
storage_(allocator)140 : storage_(allocator) {
141 storage_.Initialize(CopyValueAdapter<A>(std::addressof(v)), n);
142 }
143
144 // Creates an inlined vector with copies of the elements of `list`.
145 InlinedVector(std::initializer_list<value_type> list,
146 const allocator_type& allocator = allocator_type())
147 : InlinedVector(list.begin(), list.end(), allocator) {}
148
149 // Creates an inlined vector with elements constructed from the provided
150 // forward iterator range [`first`, `last`).
151 //
152 // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
153 // this constructor with two integral arguments and a call to the above
154 // `InlinedVector(size_type, const_reference)` constructor.
155 template <typename ForwardIterator,
156 EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
157 InlinedVector(ForwardIterator first, ForwardIterator last,
158 const allocator_type& allocator = allocator_type())
storage_(allocator)159 : storage_(allocator) {
160 storage_.Initialize(IteratorValueAdapter<A, ForwardIterator>(first),
161 static_cast<size_t>(std::distance(first, last)));
162 }
163
164 // Creates an inlined vector with elements constructed from the provided input
165 // iterator range [`first`, `last`).
166 template <typename InputIterator,
167 DisableIfAtLeastForwardIterator<InputIterator> = 0>
168 InlinedVector(InputIterator first, InputIterator last,
169 const allocator_type& allocator = allocator_type())
storage_(allocator)170 : storage_(allocator) {
171 std::copy(first, last, std::back_inserter(*this));
172 }
173
174 // Creates an inlined vector by copying the contents of `other` using
175 // `other`'s allocator.
InlinedVector(const InlinedVector & other)176 InlinedVector(const InlinedVector& other)
177 : InlinedVector(other, other.storage_.GetAllocator()) {}
178
179 // Creates an inlined vector by copying the contents of `other` using the
180 // provided `allocator`.
InlinedVector(const InlinedVector & other,const allocator_type & allocator)181 InlinedVector(const InlinedVector& other, const allocator_type& allocator)
182 : storage_(allocator) {
183 // Fast path: if the other vector is empty, there's nothing for us to do.
184 if (other.empty()) {
185 return;
186 }
187
188 // Fast path: if the value type is trivially copy constructible, we know the
189 // allocator doesn't do anything fancy, and there is nothing on the heap
190 // then we know it is legal for us to simply memcpy the other vector's
191 // inlined bytes to form our copy of its elements.
192 if (absl::is_trivially_copy_constructible<value_type>::value &&
193 std::is_same<A, std::allocator<value_type>>::value &&
194 !other.storage_.GetIsAllocated()) {
195 storage_.MemcpyFrom(other.storage_);
196 return;
197 }
198
199 storage_.InitFrom(other.storage_);
200 }
201
202 // Creates an inlined vector by moving in the contents of `other` without
203 // allocating. If `other` contains allocated memory, the newly-created inlined
204 // vector will take ownership of that memory. However, if `other` does not
205 // contain allocated memory, the newly-created inlined vector will perform
206 // element-wise move construction of the contents of `other`.
207 //
208 // NOTE: since no allocation is performed for the inlined vector in either
209 // case, the `noexcept(...)` specification depends on whether moving the
210 // underlying objects can throw. It is assumed assumed that...
211 // a) move constructors should only throw due to allocation failure.
212 // b) if `value_type`'s move constructor allocates, it uses the same
213 // allocation function as the inlined vector's allocator.
214 // Thus, the move constructor is non-throwing if the allocator is non-throwing
215 // or `value_type`'s move constructor is specified as `noexcept`.
216 InlinedVector(InlinedVector&& other) noexcept(
217 absl::allocator_is_nothrow<allocator_type>::value ||
218 std::is_nothrow_move_constructible<value_type>::value)
219 : storage_(other.storage_.GetAllocator()) {
220 // Fast path: if the value type can be trivially relocated (i.e. moved from
221 // and destroyed), and we know the allocator doesn't do anything fancy, then
222 // it's safe for us to simply adopt the contents of the storage for `other`
223 // and remove its own reference to them. It's as if we had individually
224 // move-constructed each value and then destroyed the original.
225 if (absl::is_trivially_relocatable<value_type>::value &&
226 std::is_same<A, std::allocator<value_type>>::value) {
227 storage_.MemcpyFrom(other.storage_);
228 other.storage_.SetInlinedSize(0);
229 return;
230 }
231
232 // Fast path: if the other vector is on the heap, we can simply take over
233 // its allocation.
234 if (other.storage_.GetIsAllocated()) {
235 storage_.SetAllocation({other.storage_.GetAllocatedData(),
236 other.storage_.GetAllocatedCapacity()});
237 storage_.SetAllocatedSize(other.storage_.GetSize());
238
239 other.storage_.SetInlinedSize(0);
240 return;
241 }
242
243 // Otherwise we must move each element individually.
244 IteratorValueAdapter<A, MoveIterator<A>> other_values(
245 MoveIterator<A>(other.storage_.GetInlinedData()));
246
247 inlined_vector_internal::ConstructElements<A>(
248 storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
249 other.storage_.GetSize());
250
251 storage_.SetInlinedSize(other.storage_.GetSize());
252 }
253
254 // Creates an inlined vector by moving in the contents of `other` with a copy
255 // of `allocator`.
256 //
257 // NOTE: if `other`'s allocator is not equal to `allocator`, even if `other`
258 // contains allocated memory, this move constructor will still allocate. Since
259 // allocation is performed, this constructor can only be `noexcept` if the
260 // specified allocator is also `noexcept`.
InlinedVector(InlinedVector && other,const allocator_type & allocator)261 InlinedVector(
262 InlinedVector&& other,
263 const allocator_type&
264 allocator) noexcept(absl::allocator_is_nothrow<allocator_type>::value)
265 : storage_(allocator) {
266 // Fast path: if the value type can be trivially relocated (i.e. moved from
267 // and destroyed), and we know the allocator doesn't do anything fancy, then
268 // it's safe for us to simply adopt the contents of the storage for `other`
269 // and remove its own reference to them. It's as if we had individually
270 // move-constructed each value and then destroyed the original.
271 if (absl::is_trivially_relocatable<value_type>::value &&
272 std::is_same<A, std::allocator<value_type>>::value) {
273 storage_.MemcpyFrom(other.storage_);
274 other.storage_.SetInlinedSize(0);
275 return;
276 }
277
278 // Fast path: if the other vector is on the heap and shared the same
279 // allocator, we can simply take over its allocation.
280 if ((storage_.GetAllocator() == other.storage_.GetAllocator()) &&
281 other.storage_.GetIsAllocated()) {
282 storage_.SetAllocation({other.storage_.GetAllocatedData(),
283 other.storage_.GetAllocatedCapacity()});
284 storage_.SetAllocatedSize(other.storage_.GetSize());
285
286 other.storage_.SetInlinedSize(0);
287 return;
288 }
289
290 // Otherwise we must move each element individually.
291 storage_.Initialize(
292 IteratorValueAdapter<A, MoveIterator<A>>(MoveIterator<A>(other.data())),
293 other.size());
294 }
295
~InlinedVector()296 ~InlinedVector() {}
297
298 // ---------------------------------------------------------------------------
299 // InlinedVector Member Accessors
300 // ---------------------------------------------------------------------------
301
302 // `InlinedVector::empty()`
303 //
304 // Returns whether the inlined vector contains no elements.
empty()305 bool empty() const noexcept { return !size(); }
306
307 // `InlinedVector::size()`
308 //
309 // Returns the number of elements in the inlined vector.
size()310 size_type size() const noexcept { return storage_.GetSize(); }
311
312 // `InlinedVector::max_size()`
313 //
314 // Returns the maximum number of elements the inlined vector can hold.
max_size()315 size_type max_size() const noexcept {
316 // One bit of the size storage is used to indicate whether the inlined
317 // vector contains allocated memory. As a result, the maximum size that the
318 // inlined vector can express is the minimum of the limit of how many
319 // objects we can allocate and std::numeric_limits<size_type>::max() / 2.
320 return (std::min)(AllocatorTraits<A>::max_size(storage_.GetAllocator()),
321 (std::numeric_limits<size_type>::max)() / 2);
322 }
323
324 // `InlinedVector::capacity()`
325 //
326 // Returns the number of elements that could be stored in the inlined vector
327 // without requiring a reallocation.
328 //
329 // NOTE: for most inlined vectors, `capacity()` should be equal to the
330 // template parameter `N`. For inlined vectors which exceed this capacity,
331 // they will no longer be inlined and `capacity()` will equal the capactity of
332 // the allocated memory.
capacity()333 size_type capacity() const noexcept {
334 return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
335 : storage_.GetInlinedCapacity();
336 }
337
338 // `InlinedVector::data()`
339 //
340 // Returns a `pointer` to the elements of the inlined vector. This pointer
341 // can be used to access and modify the contained elements.
342 //
343 // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()344 pointer data() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
345 return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
346 : storage_.GetInlinedData();
347 }
348
349 // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
350 // elements of the inlined vector. This pointer can be used to access but not
351 // modify the contained elements.
352 //
353 // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()354 const_pointer data() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
355 return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
356 : storage_.GetInlinedData();
357 }
358
359 // `InlinedVector::operator[](...)`
360 //
361 // Returns a `reference` to the `i`th element of the inlined vector.
362 reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
363 ABSL_HARDENING_ASSERT(i < size());
364 return data()[i];
365 }
366
367 // Overload of `InlinedVector::operator[](...)` that returns a
368 // `const_reference` to the `i`th element of the inlined vector.
369 const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
370 ABSL_HARDENING_ASSERT(i < size());
371 return data()[i];
372 }
373
374 // `InlinedVector::at(...)`
375 //
376 // Returns a `reference` to the `i`th element of the inlined vector.
377 //
378 // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
379 // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)380 reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
381 if (ABSL_PREDICT_FALSE(i >= size())) {
382 base_internal::ThrowStdOutOfRange(
383 "`InlinedVector::at(size_type)` failed bounds check");
384 }
385 return data()[i];
386 }
387
388 // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
389 // the `i`th element of the inlined vector.
390 //
391 // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
392 // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)393 const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
394 if (ABSL_PREDICT_FALSE(i >= size())) {
395 base_internal::ThrowStdOutOfRange(
396 "`InlinedVector::at(size_type) const` failed bounds check");
397 }
398 return data()[i];
399 }
400
401 // `InlinedVector::front()`
402 //
403 // Returns a `reference` to the first element of the inlined vector.
front()404 reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND {
405 ABSL_HARDENING_ASSERT(!empty());
406 return data()[0];
407 }
408
409 // Overload of `InlinedVector::front()` that returns a `const_reference` to
410 // the first element of the inlined vector.
front()411 const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
412 ABSL_HARDENING_ASSERT(!empty());
413 return data()[0];
414 }
415
416 // `InlinedVector::back()`
417 //
418 // Returns a `reference` to the last element of the inlined vector.
back()419 reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND {
420 ABSL_HARDENING_ASSERT(!empty());
421 return data()[size() - 1];
422 }
423
424 // Overload of `InlinedVector::back()` that returns a `const_reference` to the
425 // last element of the inlined vector.
back()426 const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
427 ABSL_HARDENING_ASSERT(!empty());
428 return data()[size() - 1];
429 }
430
431 // `InlinedVector::begin()`
432 //
433 // Returns an `iterator` to the beginning of the inlined vector.
begin()434 iterator begin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
435
436 // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
437 // the beginning of the inlined vector.
begin()438 const_iterator begin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
439 return data();
440 }
441
442 // `InlinedVector::end()`
443 //
444 // Returns an `iterator` to the end of the inlined vector.
end()445 iterator end() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
446 return data() + size();
447 }
448
449 // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
450 // end of the inlined vector.
end()451 const_iterator end() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
452 return data() + size();
453 }
454
455 // `InlinedVector::cbegin()`
456 //
457 // Returns a `const_iterator` to the beginning of the inlined vector.
cbegin()458 const_iterator cbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
459 return begin();
460 }
461
462 // `InlinedVector::cend()`
463 //
464 // Returns a `const_iterator` to the end of the inlined vector.
cend()465 const_iterator cend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
466 return end();
467 }
468
469 // `InlinedVector::rbegin()`
470 //
471 // Returns a `reverse_iterator` from the end of the inlined vector.
rbegin()472 reverse_iterator rbegin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
473 return reverse_iterator(end());
474 }
475
476 // Overload of `InlinedVector::rbegin()` that returns a
477 // `const_reverse_iterator` from the end of the inlined vector.
rbegin()478 const_reverse_iterator rbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
479 return const_reverse_iterator(end());
480 }
481
482 // `InlinedVector::rend()`
483 //
484 // Returns a `reverse_iterator` from the beginning of the inlined vector.
rend()485 reverse_iterator rend() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
486 return reverse_iterator(begin());
487 }
488
489 // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
490 // from the beginning of the inlined vector.
rend()491 const_reverse_iterator rend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
492 return const_reverse_iterator(begin());
493 }
494
495 // `InlinedVector::crbegin()`
496 //
497 // Returns a `const_reverse_iterator` from the end of the inlined vector.
crbegin()498 const_reverse_iterator crbegin() const noexcept
499 ABSL_ATTRIBUTE_LIFETIME_BOUND {
500 return rbegin();
501 }
502
503 // `InlinedVector::crend()`
504 //
505 // Returns a `const_reverse_iterator` from the beginning of the inlined
506 // vector.
crend()507 const_reverse_iterator crend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
508 return rend();
509 }
510
511 // `InlinedVector::get_allocator()`
512 //
513 // Returns a copy of the inlined vector's allocator.
get_allocator()514 allocator_type get_allocator() const { return storage_.GetAllocator(); }
515
516 // ---------------------------------------------------------------------------
517 // InlinedVector Member Mutators
518 // ---------------------------------------------------------------------------
519
520 // `InlinedVector::operator=(...)`
521 //
522 // Replaces the elements of the inlined vector with copies of the elements of
523 // `list`.
524 InlinedVector& operator=(std::initializer_list<value_type> list) {
525 assign(list.begin(), list.end());
526
527 return *this;
528 }
529
530 // Overload of `InlinedVector::operator=(...)` that replaces the elements of
531 // the inlined vector with copies of the elements of `other`.
532 InlinedVector& operator=(const InlinedVector& other) {
533 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
534 const_pointer other_data = other.data();
535 assign(other_data, other_data + other.size());
536 }
537
538 return *this;
539 }
540
541 // Overload of `InlinedVector::operator=(...)` that moves the elements of
542 // `other` into the inlined vector.
543 //
544 // NOTE: as a result of calling this overload, `other` is left in a valid but
545 // unspecified state.
546 InlinedVector& operator=(InlinedVector&& other) {
547 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
548 MoveAssignment(MoveAssignmentPolicy{}, std::move(other));
549 }
550
551 return *this;
552 }
553
554 // `InlinedVector::assign(...)`
555 //
556 // Replaces the contents of the inlined vector with `n` copies of `v`.
assign(size_type n,const_reference v)557 void assign(size_type n, const_reference v) {
558 storage_.Assign(CopyValueAdapter<A>(std::addressof(v)), n);
559 }
560
561 // Overload of `InlinedVector::assign(...)` that replaces the contents of the
562 // inlined vector with copies of the elements of `list`.
assign(std::initializer_list<value_type> list)563 void assign(std::initializer_list<value_type> list) {
564 assign(list.begin(), list.end());
565 }
566
567 // Overload of `InlinedVector::assign(...)` to replace the contents of the
568 // inlined vector with the range [`first`, `last`).
569 //
570 // NOTE: this overload is for iterators that are "forward" category or better.
571 template <typename ForwardIterator,
572 EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
assign(ForwardIterator first,ForwardIterator last)573 void assign(ForwardIterator first, ForwardIterator last) {
574 storage_.Assign(IteratorValueAdapter<A, ForwardIterator>(first),
575 static_cast<size_t>(std::distance(first, last)));
576 }
577
578 // Overload of `InlinedVector::assign(...)` to replace the contents of the
579 // inlined vector with the range [`first`, `last`).
580 //
581 // NOTE: this overload is for iterators that are "input" category.
582 template <typename InputIterator,
583 DisableIfAtLeastForwardIterator<InputIterator> = 0>
assign(InputIterator first,InputIterator last)584 void assign(InputIterator first, InputIterator last) {
585 size_type i = 0;
586 for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
587 data()[i] = *first;
588 }
589
590 erase(data() + i, data() + size());
591 std::copy(first, last, std::back_inserter(*this));
592 }
593
594 // `InlinedVector::resize(...)`
595 //
596 // Resizes the inlined vector to contain `n` elements.
597 //
598 // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n`
599 // is larger than `size()`, new elements are value-initialized.
resize(size_type n)600 void resize(size_type n) {
601 ABSL_HARDENING_ASSERT(n <= max_size());
602 storage_.Resize(DefaultValueAdapter<A>(), n);
603 }
604
605 // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
606 // contain `n` elements.
607 //
608 // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
609 // is larger than `size()`, new elements are copied-constructed from `v`.
resize(size_type n,const_reference v)610 void resize(size_type n, const_reference v) {
611 ABSL_HARDENING_ASSERT(n <= max_size());
612 storage_.Resize(CopyValueAdapter<A>(std::addressof(v)), n);
613 }
614
615 // `InlinedVector::insert(...)`
616 //
617 // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
618 // inserted element.
insert(const_iterator pos,const_reference v)619 iterator insert(const_iterator pos,
620 const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
621 return emplace(pos, v);
622 }
623
624 // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
625 // move semantics, returning an `iterator` to the newly inserted element.
insert(const_iterator pos,value_type && v)626 iterator insert(const_iterator pos,
627 value_type&& v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
628 return emplace(pos, std::move(v));
629 }
630
631 // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
632 // of `v` starting at `pos`, returning an `iterator` pointing to the first of
633 // the newly inserted elements.
insert(const_iterator pos,size_type n,const_reference v)634 iterator insert(const_iterator pos, size_type n,
635 const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
636 ABSL_HARDENING_ASSERT(pos >= begin());
637 ABSL_HARDENING_ASSERT(pos <= end());
638
639 if (ABSL_PREDICT_TRUE(n != 0)) {
640 value_type dealias = v;
641 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
642 // It appears that GCC thinks that since `pos` is a const pointer and may
643 // point to uninitialized memory at this point, a warning should be
644 // issued. But `pos` is actually only used to compute an array index to
645 // write to.
646 #if !defined(__clang__) && defined(__GNUC__)
647 #pragma GCC diagnostic push
648 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
649 #endif
650 return storage_.Insert(pos, CopyValueAdapter<A>(std::addressof(dealias)),
651 n);
652 #if !defined(__clang__) && defined(__GNUC__)
653 #pragma GCC diagnostic pop
654 #endif
655 } else {
656 return const_cast<iterator>(pos);
657 }
658 }
659
660 // Overload of `InlinedVector::insert(...)` that inserts copies of the
661 // elements of `list` starting at `pos`, returning an `iterator` pointing to
662 // the first of the newly inserted elements.
insert(const_iterator pos,std::initializer_list<value_type> list)663 iterator insert(const_iterator pos, std::initializer_list<value_type> list)
664 ABSL_ATTRIBUTE_LIFETIME_BOUND {
665 return insert(pos, list.begin(), list.end());
666 }
667
668 // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
669 // `last`) starting at `pos`, returning an `iterator` pointing to the first
670 // of the newly inserted elements.
671 //
672 // NOTE: this overload is for iterators that are "forward" category or better.
673 template <typename ForwardIterator,
674 EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
insert(const_iterator pos,ForwardIterator first,ForwardIterator last)675 iterator insert(const_iterator pos, ForwardIterator first,
676 ForwardIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
677 ABSL_HARDENING_ASSERT(pos >= begin());
678 ABSL_HARDENING_ASSERT(pos <= end());
679
680 if (ABSL_PREDICT_TRUE(first != last)) {
681 return storage_.Insert(
682 pos, IteratorValueAdapter<A, ForwardIterator>(first),
683 static_cast<size_type>(std::distance(first, last)));
684 } else {
685 return const_cast<iterator>(pos);
686 }
687 }
688
689 // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
690 // `last`) starting at `pos`, returning an `iterator` pointing to the first
691 // of the newly inserted elements.
692 //
693 // NOTE: this overload is for iterators that are "input" category.
694 template <typename InputIterator,
695 DisableIfAtLeastForwardIterator<InputIterator> = 0>
insert(const_iterator pos,InputIterator first,InputIterator last)696 iterator insert(const_iterator pos, InputIterator first,
697 InputIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
698 ABSL_HARDENING_ASSERT(pos >= begin());
699 ABSL_HARDENING_ASSERT(pos <= end());
700
701 size_type index = static_cast<size_type>(std::distance(cbegin(), pos));
702 for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
703 insert(data() + i, *first);
704 }
705
706 return iterator(data() + index);
707 }
708
709 // `InlinedVector::emplace(...)`
710 //
711 // Constructs and inserts an element using `args...` in the inlined vector at
712 // `pos`, returning an `iterator` pointing to the newly emplaced element.
713 template <typename... Args>
emplace(const_iterator pos,Args &&...args)714 iterator emplace(const_iterator pos,
715 Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
716 ABSL_HARDENING_ASSERT(pos >= begin());
717 ABSL_HARDENING_ASSERT(pos <= end());
718
719 value_type dealias(std::forward<Args>(args)...);
720 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
721 // It appears that GCC thinks that since `pos` is a const pointer and may
722 // point to uninitialized memory at this point, a warning should be
723 // issued. But `pos` is actually only used to compute an array index to
724 // write to.
725 #if !defined(__clang__) && defined(__GNUC__)
726 #pragma GCC diagnostic push
727 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
728 #endif
729 return storage_.Insert(pos,
730 IteratorValueAdapter<A, MoveIterator<A>>(
731 MoveIterator<A>(std::addressof(dealias))),
732 1);
733 #if !defined(__clang__) && defined(__GNUC__)
734 #pragma GCC diagnostic pop
735 #endif
736 }
737
738 // `InlinedVector::emplace_back(...)`
739 //
740 // Constructs and inserts an element using `args...` in the inlined vector at
741 // `end()`, returning a `reference` to the newly emplaced element.
742 template <typename... Args>
emplace_back(Args &&...args)743 reference emplace_back(Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
744 return storage_.EmplaceBack(std::forward<Args>(args)...);
745 }
746
747 // `InlinedVector::push_back(...)`
748 //
749 // Inserts a copy of `v` in the inlined vector at `end()`.
push_back(const_reference v)750 void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
751
752 // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
753 // using move semantics.
push_back(value_type && v)754 void push_back(value_type&& v) {
755 static_cast<void>(emplace_back(std::move(v)));
756 }
757
758 // `InlinedVector::pop_back()`
759 //
760 // Destroys the element at `back()`, reducing the size by `1`.
pop_back()761 void pop_back() noexcept {
762 ABSL_HARDENING_ASSERT(!empty());
763
764 AllocatorTraits<A>::destroy(storage_.GetAllocator(), data() + (size() - 1));
765 storage_.SubtractSize(1);
766 }
767
768 // `InlinedVector::erase(...)`
769 //
770 // Erases the element at `pos`, returning an `iterator` pointing to where the
771 // erased element was located.
772 //
773 // NOTE: may return `end()`, which is not dereferenceable.
erase(const_iterator pos)774 iterator erase(const_iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND {
775 ABSL_HARDENING_ASSERT(pos >= begin());
776 ABSL_HARDENING_ASSERT(pos < end());
777
778 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
779 // It appears that GCC thinks that since `pos` is a const pointer and may
780 // point to uninitialized memory at this point, a warning should be
781 // issued. But `pos` is actually only used to compute an array index to
782 // write to.
783 #if !defined(__clang__) && defined(__GNUC__)
784 #pragma GCC diagnostic push
785 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
786 #pragma GCC diagnostic ignored "-Wuninitialized"
787 #endif
788 return storage_.Erase(pos, pos + 1);
789 #if !defined(__clang__) && defined(__GNUC__)
790 #pragma GCC diagnostic pop
791 #endif
792 }
793
794 // Overload of `InlinedVector::erase(...)` that erases every element in the
795 // range [`from`, `to`), returning an `iterator` pointing to where the first
796 // erased element was located.
797 //
798 // NOTE: may return `end()`, which is not dereferenceable.
erase(const_iterator from,const_iterator to)799 iterator erase(const_iterator from,
800 const_iterator to) ABSL_ATTRIBUTE_LIFETIME_BOUND {
801 ABSL_HARDENING_ASSERT(from >= begin());
802 ABSL_HARDENING_ASSERT(from <= to);
803 ABSL_HARDENING_ASSERT(to <= end());
804
805 if (ABSL_PREDICT_TRUE(from != to)) {
806 return storage_.Erase(from, to);
807 } else {
808 return const_cast<iterator>(from);
809 }
810 }
811
812 // `InlinedVector::clear()`
813 //
814 // Destroys all elements in the inlined vector, setting the size to `0` and
815 // deallocating any held memory.
clear()816 void clear() noexcept {
817 inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
818 storage_.GetAllocator(), data(), size());
819 storage_.DeallocateIfAllocated();
820
821 storage_.SetInlinedSize(0);
822 }
823
824 // `InlinedVector::reserve(...)`
825 //
826 // Ensures that there is enough room for at least `n` elements.
reserve(size_type n)827 void reserve(size_type n) { storage_.Reserve(n); }
828
829 // `InlinedVector::shrink_to_fit()`
830 //
831 // Attempts to reduce memory usage by moving elements to (or keeping elements
832 // in) the smallest available buffer sufficient for containing `size()`
833 // elements.
834 //
835 // If `size()` is sufficiently small, the elements will be moved into (or kept
836 // in) the inlined space.
shrink_to_fit()837 void shrink_to_fit() {
838 if (storage_.GetIsAllocated()) {
839 storage_.ShrinkToFit();
840 }
841 }
842
843 // `InlinedVector::swap(...)`
844 //
845 // Swaps the contents of the inlined vector with `other`.
swap(InlinedVector & other)846 void swap(InlinedVector& other) {
847 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
848 storage_.Swap(std::addressof(other.storage_));
849 }
850 }
851
852 private:
853 template <typename H, typename TheT, size_t TheN, typename TheA>
854 friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
855
MoveAssignment(MemcpyPolicy,InlinedVector && other)856 void MoveAssignment(MemcpyPolicy, InlinedVector&& other) {
857 // Assumption check: we shouldn't be told to use memcpy to implement move
858 // assignment unless we have trivially destructible elements and an
859 // allocator that does nothing fancy.
860 static_assert(absl::is_trivially_destructible<value_type>::value, "");
861 static_assert(std::is_same<A, std::allocator<value_type>>::value, "");
862
863 // Throw away our existing heap allocation, if any. There is no need to
864 // destroy the existing elements one by one because we know they are
865 // trivially destructible.
866 storage_.DeallocateIfAllocated();
867
868 // Adopt the other vector's inline elements or heap allocation.
869 storage_.MemcpyFrom(other.storage_);
870 other.storage_.SetInlinedSize(0);
871 }
872
873 // Destroy our existing elements, if any, and adopt the heap-allocated
874 // elements of the other vector.
875 //
876 // REQUIRES: other.storage_.GetIsAllocated()
DestroyExistingAndAdopt(InlinedVector && other)877 void DestroyExistingAndAdopt(InlinedVector&& other) {
878 ABSL_HARDENING_ASSERT(other.storage_.GetIsAllocated());
879
880 inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
881 storage_.GetAllocator(), data(), size());
882 storage_.DeallocateIfAllocated();
883
884 storage_.MemcpyFrom(other.storage_);
885 other.storage_.SetInlinedSize(0);
886 }
887
MoveAssignment(ElementwiseAssignPolicy,InlinedVector && other)888 void MoveAssignment(ElementwiseAssignPolicy, InlinedVector&& other) {
889 // Fast path: if the other vector is on the heap then we don't worry about
890 // actually move-assigning each element. Instead we only throw away our own
891 // existing elements and adopt the heap allocation of the other vector.
892 if (other.storage_.GetIsAllocated()) {
893 DestroyExistingAndAdopt(std::move(other));
894 return;
895 }
896
897 storage_.Assign(IteratorValueAdapter<A, MoveIterator<A>>(
898 MoveIterator<A>(other.storage_.GetInlinedData())),
899 other.size());
900 }
901
MoveAssignment(ElementwiseConstructPolicy,InlinedVector && other)902 void MoveAssignment(ElementwiseConstructPolicy, InlinedVector&& other) {
903 // Fast path: if the other vector is on the heap then we don't worry about
904 // actually move-assigning each element. Instead we only throw away our own
905 // existing elements and adopt the heap allocation of the other vector.
906 if (other.storage_.GetIsAllocated()) {
907 DestroyExistingAndAdopt(std::move(other));
908 return;
909 }
910
911 inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
912 storage_.GetAllocator(), data(), size());
913 storage_.DeallocateIfAllocated();
914
915 IteratorValueAdapter<A, MoveIterator<A>> other_values(
916 MoveIterator<A>(other.storage_.GetInlinedData()));
917 inlined_vector_internal::ConstructElements<A>(
918 storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
919 other.storage_.GetSize());
920 storage_.SetInlinedSize(other.storage_.GetSize());
921 }
922
923 Storage storage_;
924 };
925
926 // -----------------------------------------------------------------------------
927 // InlinedVector Non-Member Functions
928 // -----------------------------------------------------------------------------
929
930 // `swap(...)`
931 //
932 // Swaps the contents of two inlined vectors.
933 template <typename T, size_t N, typename A>
swap(absl::InlinedVector<T,N,A> & a,absl::InlinedVector<T,N,A> & b)934 void swap(absl::InlinedVector<T, N, A>& a,
935 absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
936 a.swap(b);
937 }
938
939 // `operator==(...)`
940 //
941 // Tests for value-equality of two inlined vectors.
942 template <typename T, size_t N, typename A>
943 bool operator==(const absl::InlinedVector<T, N, A>& a,
944 const absl::InlinedVector<T, N, A>& b) {
945 auto a_data = a.data();
946 auto b_data = b.data();
947 return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
948 }
949
950 // `operator!=(...)`
951 //
952 // Tests for value-inequality of two inlined vectors.
953 template <typename T, size_t N, typename A>
954 bool operator!=(const absl::InlinedVector<T, N, A>& a,
955 const absl::InlinedVector<T, N, A>& b) {
956 return !(a == b);
957 }
958
959 // `operator<(...)`
960 //
961 // Tests whether the value of an inlined vector is less than the value of
962 // another inlined vector using a lexicographical comparison algorithm.
963 template <typename T, size_t N, typename A>
964 bool operator<(const absl::InlinedVector<T, N, A>& a,
965 const absl::InlinedVector<T, N, A>& b) {
966 auto a_data = a.data();
967 auto b_data = b.data();
968 return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
969 b_data + b.size());
970 }
971
972 // `operator>(...)`
973 //
974 // Tests whether the value of an inlined vector is greater than the value of
975 // another inlined vector using a lexicographical comparison algorithm.
976 template <typename T, size_t N, typename A>
977 bool operator>(const absl::InlinedVector<T, N, A>& a,
978 const absl::InlinedVector<T, N, A>& b) {
979 return b < a;
980 }
981
982 // `operator<=(...)`
983 //
984 // Tests whether the value of an inlined vector is less than or equal to the
985 // value of another inlined vector using a lexicographical comparison algorithm.
986 template <typename T, size_t N, typename A>
987 bool operator<=(const absl::InlinedVector<T, N, A>& a,
988 const absl::InlinedVector<T, N, A>& b) {
989 return !(b < a);
990 }
991
992 // `operator>=(...)`
993 //
994 // Tests whether the value of an inlined vector is greater than or equal to the
995 // value of another inlined vector using a lexicographical comparison algorithm.
996 template <typename T, size_t N, typename A>
997 bool operator>=(const absl::InlinedVector<T, N, A>& a,
998 const absl::InlinedVector<T, N, A>& b) {
999 return !(a < b);
1000 }
1001
1002 // `AbslHashValue(...)`
1003 //
1004 // Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
1005 // call this directly.
1006 template <typename H, typename T, size_t N, typename A>
AbslHashValue(H h,const absl::InlinedVector<T,N,A> & a)1007 H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
1008 auto size = a.size();
1009 return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
1010 }
1011
1012 ABSL_NAMESPACE_END
1013 } // namespace absl
1014
1015 #endif // ABSL_CONTAINER_INLINED_VECTOR_H_
1016