1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: flat_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::flat_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `flat_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`.
29 //
30 // `flat_hash_map` is not exception-safe.
31
32 #ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
33 #define ABSL_CONTAINER_FLAT_HASH_MAP_H_
34
35 #include <cstddef>
36 #include <memory>
37 #include <type_traits>
38 #include <utility>
39
40 #include "absl/algorithm/container.h"
41 #include "absl/base/attributes.h"
42 #include "absl/base/macros.h"
43 #include "absl/container/hash_container_defaults.h"
44 #include "absl/container/internal/container_memory.h"
45 #include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
46 #include "absl/meta/type_traits.h"
47
48 namespace absl {
49 ABSL_NAMESPACE_BEGIN
50 namespace container_internal {
51 template <class K, class V>
52 struct FlatHashMapPolicy;
53 } // namespace container_internal
54
55 // -----------------------------------------------------------------------------
56 // absl::flat_hash_map
57 // -----------------------------------------------------------------------------
58 //
59 // An `absl::flat_hash_map<K, V>` is an unordered associative container which
60 // has been optimized for both speed and memory footprint in most common use
61 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
62 // the following notable differences:
63 //
64 // * Requires keys that are CopyConstructible
65 // * Requires values that are MoveConstructible
66 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
67 // `insert()`, provided that the map is provided a compatible heterogeneous
68 // hashing function and equality operator. See below for details.
69 // * Invalidates any references and pointers to elements within the table after
70 // `rehash()` and when the table is moved.
71 // * Contains a `capacity()` member function indicating the number of element
72 // slots (open, deleted, and empty) within the hash map.
73 // * Returns `void` from the `erase(iterator)` overload.
74 //
75 // By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
76 // All fundamental and Abseil types that support the `absl::Hash` framework have
77 // a compatible equality operator for comparing insertions into `flat_hash_map`.
78 // If your type is not yet supported by the `absl::Hash` framework, see
79 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
80 // types.
81 //
82 // Using `absl::flat_hash_map` at interface boundaries in dynamically loaded
83 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
84 // be randomized across dynamically loaded libraries.
85 //
86 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
87 // parameters can be used or `T` should have public inner types
88 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
89 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
90 // well-formed. Both types are basically functors:
91 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
92 // for the given `val`.
93 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
94 // if `lhs` is equal to `rhs`.
95 //
96 // In most cases `T` needs only to provide the `absl_container_hash`. In this
97 // case `std::equal_to<void>` will be used instead of `eq` part.
98 //
99 // NOTE: A `flat_hash_map` stores its value types directly inside its
100 // implementation array to avoid memory indirection. Because a `flat_hash_map`
101 // is designed to move data when rehashed, map values will not retain pointer
102 // stability. If you require pointer stability, or if your values are large,
103 // consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
104 // If your types are not moveable or you require pointer stability for keys,
105 // consider `absl::node_hash_map`.
106 //
107 // Example:
108 //
109 // // Create a flat hash map of three strings (that map to strings)
110 // absl::flat_hash_map<std::string, std::string> ducks =
111 // {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
112 //
113 // // Insert a new element into the flat hash map
114 // ducks.insert({"d", "donald"});
115 //
116 // // Force a rehash of the flat hash map
117 // ducks.rehash(0);
118 //
119 // // Find the element with the key "b"
120 // std::string search_key = "b";
121 // auto result = ducks.find(search_key);
122 // if (result != ducks.end()) {
123 // std::cout << "Result: " << result->second << std::endl;
124 // }
125 template <class K, class V, class Hash = DefaultHashContainerHash<K>,
126 class Eq = DefaultHashContainerEq<K>,
127 class Allocator = std::allocator<std::pair<const K, V>>>
128 class ABSL_INTERNAL_ATTRIBUTE_OWNER flat_hash_map
129 : public absl::container_internal::raw_hash_map<
130 absl::container_internal::FlatHashMapPolicy<K, V>, Hash, Eq,
131 Allocator> {
132 using Base = typename flat_hash_map::raw_hash_map;
133
134 public:
135 // Constructors and Assignment Operators
136 //
137 // A flat_hash_map supports the same overload set as `std::unordered_map`
138 // for construction and assignment:
139 //
140 // * Default constructor
141 //
142 // // No allocation for the table's elements is made.
143 // absl::flat_hash_map<int, std::string> map1;
144 //
145 // * Initializer List constructor
146 //
147 // absl::flat_hash_map<int, std::string> map2 =
148 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
149 //
150 // * Copy constructor
151 //
152 // absl::flat_hash_map<int, std::string> map3(map2);
153 //
154 // * Copy assignment operator
155 //
156 // // Hash functor and Comparator are copied as well
157 // absl::flat_hash_map<int, std::string> map4;
158 // map4 = map3;
159 //
160 // * Move constructor
161 //
162 // // Move is guaranteed efficient
163 // absl::flat_hash_map<int, std::string> map5(std::move(map4));
164 //
165 // * Move assignment operator
166 //
167 // // May be efficient if allocators are compatible
168 // absl::flat_hash_map<int, std::string> map6;
169 // map6 = std::move(map5);
170 //
171 // * Range constructor
172 //
173 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
174 // absl::flat_hash_map<int, std::string> map7(v.begin(), v.end());
flat_hash_map()175 flat_hash_map() {}
176 using Base::Base;
177
178 // flat_hash_map::begin()
179 //
180 // Returns an iterator to the beginning of the `flat_hash_map`.
181 using Base::begin;
182
183 // flat_hash_map::cbegin()
184 //
185 // Returns a const iterator to the beginning of the `flat_hash_map`.
186 using Base::cbegin;
187
188 // flat_hash_map::cend()
189 //
190 // Returns a const iterator to the end of the `flat_hash_map`.
191 using Base::cend;
192
193 // flat_hash_map::end()
194 //
195 // Returns an iterator to the end of the `flat_hash_map`.
196 using Base::end;
197
198 // flat_hash_map::capacity()
199 //
200 // Returns the number of element slots (assigned, deleted, and empty)
201 // available within the `flat_hash_map`.
202 //
203 // NOTE: this member function is particular to `absl::flat_hash_map` and is
204 // not provided in the `std::unordered_map` API.
205 using Base::capacity;
206
207 // flat_hash_map::empty()
208 //
209 // Returns whether or not the `flat_hash_map` is empty.
210 using Base::empty;
211
212 // flat_hash_map::max_size()
213 //
214 // Returns the largest theoretical possible number of elements within a
215 // `flat_hash_map` under current memory constraints. This value can be thought
216 // of the largest value of `std::distance(begin(), end())` for a
217 // `flat_hash_map<K, V>`.
218 using Base::max_size;
219
220 // flat_hash_map::size()
221 //
222 // Returns the number of elements currently within the `flat_hash_map`.
223 using Base::size;
224
225 // flat_hash_map::clear()
226 //
227 // Removes all elements from the `flat_hash_map`. Invalidates any references,
228 // pointers, or iterators referring to contained elements.
229 //
230 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
231 // the underlying buffer call `erase(begin(), end())`.
232 using Base::clear;
233
234 // flat_hash_map::erase()
235 //
236 // Erases elements within the `flat_hash_map`. Erasing does not trigger a
237 // rehash. Overloads are listed below.
238 //
239 // void erase(const_iterator pos):
240 //
241 // Erases the element at `position` of the `flat_hash_map`, returning
242 // `void`.
243 //
244 // NOTE: returning `void` in this case is different than that of STL
245 // containers in general and `std::unordered_map` in particular (which
246 // return an iterator to the element following the erased element). If that
247 // iterator is needed, simply post increment the iterator:
248 //
249 // map.erase(it++);
250 //
251 // iterator erase(const_iterator first, const_iterator last):
252 //
253 // Erases the elements in the open interval [`first`, `last`), returning an
254 // iterator pointing to `last`. The special case of calling
255 // `erase(begin(), end())` resets the reserved growth such that if
256 // `reserve(N)` has previously been called and there has been no intervening
257 // call to `clear()`, then after calling `erase(begin(), end())`, it is safe
258 // to assume that inserting N elements will not cause a rehash.
259 //
260 // size_type erase(const key_type& key):
261 //
262 // Erases the element with the matching key, if it exists, returning the
263 // number of elements erased (0 or 1).
264 using Base::erase;
265
266 // flat_hash_map::insert()
267 //
268 // Inserts an element of the specified value into the `flat_hash_map`,
269 // returning an iterator pointing to the newly inserted element, provided that
270 // an element with the given key does not already exist. If rehashing occurs
271 // due to the insertion, all iterators are invalidated. Overloads are listed
272 // below.
273 //
274 // std::pair<iterator,bool> insert(const init_type& value):
275 //
276 // Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
277 // iterator to the inserted element (or to the element that prevented the
278 // insertion) and a bool denoting whether the insertion took place.
279 //
280 // std::pair<iterator,bool> insert(T&& value):
281 // std::pair<iterator,bool> insert(init_type&& value):
282 //
283 // Inserts a moveable value into the `flat_hash_map`. Returns a pair
284 // consisting of an iterator to the inserted element (or to the element that
285 // prevented the insertion) and a bool denoting whether the insertion took
286 // place.
287 //
288 // iterator insert(const_iterator hint, const init_type& value):
289 // iterator insert(const_iterator hint, T&& value):
290 // iterator insert(const_iterator hint, init_type&& value);
291 //
292 // Inserts a value, using the position of `hint` as a non-binding suggestion
293 // for where to begin the insertion search. Returns an iterator to the
294 // inserted element, or to the existing element that prevented the
295 // insertion.
296 //
297 // void insert(InputIterator first, InputIterator last):
298 //
299 // Inserts a range of values [`first`, `last`).
300 //
301 // NOTE: Although the STL does not specify which element may be inserted if
302 // multiple keys compare equivalently, for `flat_hash_map` we guarantee the
303 // first match is inserted.
304 //
305 // void insert(std::initializer_list<init_type> ilist):
306 //
307 // Inserts the elements within the initializer list `ilist`.
308 //
309 // NOTE: Although the STL does not specify which element may be inserted if
310 // multiple keys compare equivalently within the initializer list, for
311 // `flat_hash_map` we guarantee the first match is inserted.
312 using Base::insert;
313
314 // flat_hash_map::insert_or_assign()
315 //
316 // Inserts an element of the specified value into the `flat_hash_map` provided
317 // that a value with the given key does not already exist, or replaces it with
318 // the element value if a key for that value already exists, returning an
319 // iterator pointing to the newly inserted element. If rehashing occurs due
320 // to the insertion, all existing iterators are invalidated. Overloads are
321 // listed below.
322 //
323 // pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
324 // pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
325 //
326 // Inserts/Assigns (or moves) the element of the specified key into the
327 // `flat_hash_map`.
328 //
329 // iterator insert_or_assign(const_iterator hint,
330 // const init_type& k, T&& obj):
331 // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
332 //
333 // Inserts/Assigns (or moves) the element of the specified key into the
334 // `flat_hash_map` using the position of `hint` as a non-binding suggestion
335 // for where to begin the insertion search.
336 using Base::insert_or_assign;
337
338 // flat_hash_map::emplace()
339 //
340 // Inserts an element of the specified value by constructing it in-place
341 // within the `flat_hash_map`, provided that no element with the given key
342 // already exists.
343 //
344 // The element may be constructed even if there already is an element with the
345 // key in the container, in which case the newly constructed element will be
346 // destroyed immediately. Prefer `try_emplace()` unless your key is not
347 // copyable or moveable.
348 //
349 // If rehashing occurs due to the insertion, all iterators are invalidated.
350 using Base::emplace;
351
352 // flat_hash_map::emplace_hint()
353 //
354 // Inserts an element of the specified value by constructing it in-place
355 // within the `flat_hash_map`, using the position of `hint` as a non-binding
356 // suggestion for where to begin the insertion search, and only inserts
357 // provided that no element with the given key already exists.
358 //
359 // The element may be constructed even if there already is an element with the
360 // key in the container, in which case the newly constructed element will be
361 // destroyed immediately. Prefer `try_emplace()` unless your key is not
362 // copyable or moveable.
363 //
364 // If rehashing occurs due to the insertion, all iterators are invalidated.
365 using Base::emplace_hint;
366
367 // flat_hash_map::try_emplace()
368 //
369 // Inserts an element of the specified value by constructing it in-place
370 // within the `flat_hash_map`, provided that no element with the given key
371 // already exists. Unlike `emplace()`, if an element with the given key
372 // already exists, we guarantee that no element is constructed.
373 //
374 // If rehashing occurs due to the insertion, all iterators are invalidated.
375 // Overloads are listed below.
376 //
377 // pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
378 // pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
379 //
380 // Inserts (via copy or move) the element of the specified key into the
381 // `flat_hash_map`.
382 //
383 // iterator try_emplace(const_iterator hint,
384 // const key_type& k, Args&&... args):
385 // iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
386 //
387 // Inserts (via copy or move) the element of the specified key into the
388 // `flat_hash_map` using the position of `hint` as a non-binding suggestion
389 // for where to begin the insertion search.
390 //
391 // All `try_emplace()` overloads make the same guarantees regarding rvalue
392 // arguments as `std::unordered_map::try_emplace()`, namely that these
393 // functions will not move from rvalue arguments if insertions do not happen.
394 using Base::try_emplace;
395
396 // flat_hash_map::extract()
397 //
398 // Extracts the indicated element, erasing it in the process, and returns it
399 // as a C++17-compatible node handle. Overloads are listed below.
400 //
401 // node_type extract(const_iterator position):
402 //
403 // Extracts the key,value pair of the element at the indicated position and
404 // returns a node handle owning that extracted data.
405 //
406 // node_type extract(const key_type& x):
407 //
408 // Extracts the key,value pair of the element with a key matching the passed
409 // key value and returns a node handle owning that extracted data. If the
410 // `flat_hash_map` does not contain an element with a matching key, this
411 // function returns an empty node handle.
412 //
413 // NOTE: when compiled in an earlier version of C++ than C++17,
414 // `node_type::key()` returns a const reference to the key instead of a
415 // mutable reference. We cannot safely return a mutable reference without
416 // std::launder (which is not available before C++17).
417 using Base::extract;
418
419 // flat_hash_map::merge()
420 //
421 // Extracts elements from a given `source` flat hash map into this
422 // `flat_hash_map`. If the destination `flat_hash_map` already contains an
423 // element with an equivalent key, that element is not extracted.
424 using Base::merge;
425
426 // flat_hash_map::swap(flat_hash_map& other)
427 //
428 // Exchanges the contents of this `flat_hash_map` with those of the `other`
429 // flat hash map, avoiding invocation of any move, copy, or swap operations on
430 // individual elements.
431 //
432 // All iterators and references on the `flat_hash_map` remain valid, excepting
433 // for the past-the-end iterator, which is invalidated.
434 //
435 // `swap()` requires that the flat hash map's hashing and key equivalence
436 // functions be Swappable, and are exchanged using unqualified calls to
437 // non-member `swap()`. If the map's allocator has
438 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
439 // set to `true`, the allocators are also exchanged using an unqualified call
440 // to non-member `swap()`; otherwise, the allocators are not swapped.
441 using Base::swap;
442
443 // flat_hash_map::rehash(count)
444 //
445 // Rehashes the `flat_hash_map`, setting the number of slots to be at least
446 // the passed value. If the new number of slots increases the load factor more
447 // than the current maximum load factor
448 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
449 // will be at least `size()` / `max_load_factor()`.
450 //
451 // To force a rehash, pass rehash(0).
452 //
453 // NOTE: unlike behavior in `std::unordered_map`, references are also
454 // invalidated upon a `rehash()`.
455 using Base::rehash;
456
457 // flat_hash_map::reserve(count)
458 //
459 // Sets the number of slots in the `flat_hash_map` to the number needed to
460 // accommodate at least `count` total elements without exceeding the current
461 // maximum load factor, and may rehash the container if needed.
462 using Base::reserve;
463
464 // flat_hash_map::at()
465 //
466 // Returns a reference to the mapped value of the element with key equivalent
467 // to the passed key.
468 using Base::at;
469
470 // flat_hash_map::contains()
471 //
472 // Determines whether an element with a key comparing equal to the given `key`
473 // exists within the `flat_hash_map`, returning `true` if so or `false`
474 // otherwise.
475 using Base::contains;
476
477 // flat_hash_map::count(const Key& key) const
478 //
479 // Returns the number of elements with a key comparing equal to the given
480 // `key` within the `flat_hash_map`. note that this function will return
481 // either `1` or `0` since duplicate keys are not allowed within a
482 // `flat_hash_map`.
483 using Base::count;
484
485 // flat_hash_map::equal_range()
486 //
487 // Returns a closed range [first, last], defined by a `std::pair` of two
488 // iterators, containing all elements with the passed key in the
489 // `flat_hash_map`.
490 using Base::equal_range;
491
492 // flat_hash_map::find()
493 //
494 // Finds an element with the passed `key` within the `flat_hash_map`.
495 using Base::find;
496
497 // flat_hash_map::operator[]()
498 //
499 // Returns a reference to the value mapped to the passed key within the
500 // `flat_hash_map`, performing an `insert()` if the key does not already
501 // exist.
502 //
503 // If an insertion occurs and results in a rehashing of the container, all
504 // iterators are invalidated. Otherwise iterators are not affected and
505 // references are not invalidated. Overloads are listed below.
506 //
507 // T& operator[](const Key& key):
508 //
509 // Inserts an init_type object constructed in-place if the element with the
510 // given key does not exist.
511 //
512 // T& operator[](Key&& key):
513 //
514 // Inserts an init_type object constructed in-place provided that an element
515 // with the given key does not exist.
516 using Base::operator[];
517
518 // flat_hash_map::bucket_count()
519 //
520 // Returns the number of "buckets" within the `flat_hash_map`. Note that
521 // because a flat hash map contains all elements within its internal storage,
522 // this value simply equals the current capacity of the `flat_hash_map`.
523 using Base::bucket_count;
524
525 // flat_hash_map::load_factor()
526 //
527 // Returns the current load factor of the `flat_hash_map` (the average number
528 // of slots occupied with a value within the hash map).
529 using Base::load_factor;
530
531 // flat_hash_map::max_load_factor()
532 //
533 // Manages the maximum load factor of the `flat_hash_map`. Overloads are
534 // listed below.
535 //
536 // float flat_hash_map::max_load_factor()
537 //
538 // Returns the current maximum load factor of the `flat_hash_map`.
539 //
540 // void flat_hash_map::max_load_factor(float ml)
541 //
542 // Sets the maximum load factor of the `flat_hash_map` to the passed value.
543 //
544 // NOTE: This overload is provided only for API compatibility with the STL;
545 // `flat_hash_map` will ignore any set load factor and manage its rehashing
546 // internally as an implementation detail.
547 using Base::max_load_factor;
548
549 // flat_hash_map::get_allocator()
550 //
551 // Returns the allocator function associated with this `flat_hash_map`.
552 using Base::get_allocator;
553
554 // flat_hash_map::hash_function()
555 //
556 // Returns the hashing function used to hash the keys within this
557 // `flat_hash_map`.
558 using Base::hash_function;
559
560 // flat_hash_map::key_eq()
561 //
562 // Returns the function used for comparing keys equality.
563 using Base::key_eq;
564 };
565
566 // erase_if(flat_hash_map<>, Pred)
567 //
568 // Erases all elements that satisfy the predicate `pred` from the container `c`.
569 // Returns the number of erased elements.
570 template <typename K, typename V, typename H, typename E, typename A,
571 typename Predicate>
erase_if(flat_hash_map<K,V,H,E,A> & c,Predicate pred)572 typename flat_hash_map<K, V, H, E, A>::size_type erase_if(
573 flat_hash_map<K, V, H, E, A>& c, Predicate pred) {
574 return container_internal::EraseIf(pred, &c);
575 }
576
577 namespace container_internal {
578
579 // c_for_each_fast(flat_hash_map<>, Function)
580 //
581 // Container-based version of the <algorithm> `std::for_each()` function to
582 // apply a function to a container's elements.
583 // There is no guarantees on the order of the function calls.
584 // Erasure and/or insertion of elements in the function is not allowed.
585 template <typename K, typename V, typename H, typename E, typename A,
586 typename Function>
c_for_each_fast(const flat_hash_map<K,V,H,E,A> & c,Function && f)587 decay_t<Function> c_for_each_fast(const flat_hash_map<K, V, H, E, A>& c,
588 Function&& f) {
589 container_internal::ForEach(f, &c);
590 return f;
591 }
592 template <typename K, typename V, typename H, typename E, typename A,
593 typename Function>
c_for_each_fast(flat_hash_map<K,V,H,E,A> & c,Function && f)594 decay_t<Function> c_for_each_fast(flat_hash_map<K, V, H, E, A>& c,
595 Function&& f) {
596 container_internal::ForEach(f, &c);
597 return f;
598 }
599 template <typename K, typename V, typename H, typename E, typename A,
600 typename Function>
c_for_each_fast(flat_hash_map<K,V,H,E,A> && c,Function && f)601 decay_t<Function> c_for_each_fast(flat_hash_map<K, V, H, E, A>&& c,
602 Function&& f) {
603 container_internal::ForEach(f, &c);
604 return f;
605 }
606
607 } // namespace container_internal
608
609 namespace container_internal {
610
611 template <class K, class V>
612 struct FlatHashMapPolicy {
613 using slot_policy = container_internal::map_slot_policy<K, V>;
614 using slot_type = typename slot_policy::slot_type;
615 using key_type = K;
616 using mapped_type = V;
617 using init_type = std::pair</*non const*/ key_type, mapped_type>;
618
619 template <class Allocator, class... Args>
constructFlatHashMapPolicy620 static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
621 slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
622 }
623
624 // Returns std::true_type in case destroy is trivial.
625 template <class Allocator>
destroyFlatHashMapPolicy626 static auto destroy(Allocator* alloc, slot_type* slot) {
627 return slot_policy::destroy(alloc, slot);
628 }
629
630 template <class Allocator>
transferFlatHashMapPolicy631 static auto transfer(Allocator* alloc, slot_type* new_slot,
632 slot_type* old_slot) {
633 return slot_policy::transfer(alloc, new_slot, old_slot);
634 }
635
636 template <class F, class... Args>
decltypeFlatHashMapPolicy637 static decltype(absl::container_internal::DecomposePair(
638 std::declval<F>(), std::declval<Args>()...))
639 apply(F&& f, Args&&... args) {
640 return absl::container_internal::DecomposePair(std::forward<F>(f),
641 std::forward<Args>(args)...);
642 }
643
644 template <class Hash>
get_hash_slot_fnFlatHashMapPolicy645 static constexpr HashSlotFn get_hash_slot_fn() {
646 return memory_internal::IsLayoutCompatible<K, V>::value
647 ? &TypeErasedApplyToSlotFn<Hash, K>
648 : nullptr;
649 }
650
space_usedFlatHashMapPolicy651 static size_t space_used(const slot_type*) { return 0; }
652
elementFlatHashMapPolicy653 static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
654
valueFlatHashMapPolicy655 static V& value(std::pair<const K, V>* kv) { return kv->second; }
valueFlatHashMapPolicy656 static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
657 };
658
659 } // namespace container_internal
660
661 namespace container_algorithm_internal {
662
663 // Specialization of trait in absl/algorithm/container.h
664 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
665 struct IsUnorderedContainer<
666 absl::flat_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
667
668 } // namespace container_algorithm_internal
669
670 ABSL_NAMESPACE_END
671 } // namespace absl
672
673 #endif // ABSL_CONTAINER_FLAT_HASH_MAP_H_
674