1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <stdint.h>
16
17 #include <algorithm>
18 #include <functional>
19 #include <map>
20 #include <numeric>
21 #include <random>
22 #include <set>
23 #include <string>
24 #include <type_traits>
25 #include <unordered_map>
26 #include <unordered_set>
27 #include <vector>
28
29 #include "benchmark/benchmark.h"
30 #include "absl/algorithm/container.h"
31 #include "absl/base/internal/raw_logging.h"
32 #include "absl/container/btree_map.h"
33 #include "absl/container/btree_set.h"
34 #include "absl/container/btree_test.h"
35 #include "absl/container/flat_hash_map.h"
36 #include "absl/container/flat_hash_set.h"
37 #include "absl/container/internal/hashtable_debug.h"
38 #include "absl/hash/hash.h"
39 #include "absl/log/log.h"
40 #include "absl/memory/memory.h"
41 #include "absl/random/random.h"
42 #include "absl/strings/cord.h"
43 #include "absl/strings/str_format.h"
44 #include "absl/time/time.h"
45
46 namespace absl {
47 ABSL_NAMESPACE_BEGIN
48 namespace container_internal {
49 namespace {
50
51 constexpr size_t kBenchmarkValues = 1 << 20;
52
53 // How many times we add and remove sub-batches in one batch of *AddRem
54 // benchmarks.
55 constexpr size_t kAddRemBatchSize = 1 << 2;
56
57 // Generates n values in the range [0, 4 * n].
58 template <typename V>
GenerateValues(int n)59 std::vector<V> GenerateValues(int n) {
60 constexpr int kSeed = 23;
61 return GenerateValuesWithSeed<V>(n, 4 * n, kSeed);
62 }
63
64 // Benchmark insertion of values into a container.
65 template <typename T>
BM_InsertImpl(benchmark::State & state,bool sorted)66 void BM_InsertImpl(benchmark::State& state, bool sorted) {
67 using V = typename remove_pair_const<typename T::value_type>::type;
68 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
69
70 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
71 if (sorted) {
72 std::sort(values.begin(), values.end());
73 }
74 T container(values.begin(), values.end());
75
76 // Remove and re-insert 10% of the keys per batch.
77 const int batch_size = (kBenchmarkValues + 9) / 10;
78 while (state.KeepRunningBatch(batch_size)) {
79 state.PauseTiming();
80 const auto i = static_cast<int>(state.iterations());
81
82 for (int j = i; j < i + batch_size; j++) {
83 int x = j % kBenchmarkValues;
84 container.erase(key_of_value(values[x]));
85 }
86
87 state.ResumeTiming();
88
89 for (int j = i; j < i + batch_size; j++) {
90 int x = j % kBenchmarkValues;
91 container.insert(values[x]);
92 }
93 }
94 }
95
96 template <typename T>
BM_Insert(benchmark::State & state)97 void BM_Insert(benchmark::State& state) {
98 BM_InsertImpl<T>(state, false);
99 }
100
101 template <typename T>
BM_InsertSorted(benchmark::State & state)102 void BM_InsertSorted(benchmark::State& state) {
103 BM_InsertImpl<T>(state, true);
104 }
105
106 // Benchmark inserting the first few elements in a container. In b-tree, this is
107 // when the root node grows.
108 template <typename T>
BM_InsertSmall(benchmark::State & state)109 void BM_InsertSmall(benchmark::State& state) {
110 using V = typename remove_pair_const<typename T::value_type>::type;
111
112 const int kSize = 8;
113 std::vector<V> values = GenerateValues<V>(kSize);
114 T container;
115
116 while (state.KeepRunningBatch(kSize)) {
117 for (int i = 0; i < kSize; ++i) {
118 benchmark::DoNotOptimize(container.insert(values[i]));
119 }
120 state.PauseTiming();
121 // Do not measure the time it takes to clear the container.
122 container.clear();
123 state.ResumeTiming();
124 }
125 }
126
127 template <typename T>
BM_LookupImpl(benchmark::State & state,bool sorted)128 void BM_LookupImpl(benchmark::State& state, bool sorted) {
129 using V = typename remove_pair_const<typename T::value_type>::type;
130 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
131
132 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
133 if (sorted) {
134 std::sort(values.begin(), values.end());
135 }
136 T container(values.begin(), values.end());
137
138 while (state.KeepRunning()) {
139 int idx = state.iterations() % kBenchmarkValues;
140 benchmark::DoNotOptimize(container.find(key_of_value(values[idx])));
141 }
142 }
143
144 // Benchmark lookup of values in a container.
145 template <typename T>
BM_Lookup(benchmark::State & state)146 void BM_Lookup(benchmark::State& state) {
147 BM_LookupImpl<T>(state, false);
148 }
149
150 // Benchmark lookup of values in a full container, meaning that values
151 // are inserted in-order to take advantage of biased insertion, which
152 // yields a full tree.
153 template <typename T>
BM_FullLookup(benchmark::State & state)154 void BM_FullLookup(benchmark::State& state) {
155 BM_LookupImpl<T>(state, true);
156 }
157
158 // Benchmark erasing values from a container.
159 template <typename T>
BM_Erase(benchmark::State & state)160 void BM_Erase(benchmark::State& state) {
161 using V = typename remove_pair_const<typename T::value_type>::type;
162 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
163 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
164 T container(values.begin(), values.end());
165
166 // Remove and re-insert 10% of the keys per batch.
167 const int batch_size = (kBenchmarkValues + 9) / 10;
168 while (state.KeepRunningBatch(batch_size)) {
169 const int i = state.iterations();
170
171 for (int j = i; j < i + batch_size; j++) {
172 int x = j % kBenchmarkValues;
173 container.erase(key_of_value(values[x]));
174 }
175
176 state.PauseTiming();
177 for (int j = i; j < i + batch_size; j++) {
178 int x = j % kBenchmarkValues;
179 container.insert(values[x]);
180 }
181 state.ResumeTiming();
182 }
183 }
184
185 // Benchmark erasing multiple values from a container.
186 template <typename T>
BM_EraseRange(benchmark::State & state)187 void BM_EraseRange(benchmark::State& state) {
188 using V = typename remove_pair_const<typename T::value_type>::type;
189 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
190 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
191 T container(values.begin(), values.end());
192
193 // Remove and re-insert 10% of the keys per batch.
194 const int batch_size = (kBenchmarkValues + 9) / 10;
195 while (state.KeepRunningBatch(batch_size)) {
196 const int i = state.iterations();
197
198 const int start_index = i % kBenchmarkValues;
199
200 state.PauseTiming();
201 {
202 std::vector<V> removed;
203 removed.reserve(batch_size);
204 auto itr = container.find(key_of_value(values[start_index]));
205 auto start = itr;
206 for (int j = 0; j < batch_size; j++) {
207 if (itr == container.end()) {
208 state.ResumeTiming();
209 container.erase(start, itr);
210 state.PauseTiming();
211 itr = container.begin();
212 start = itr;
213 }
214 removed.push_back(*itr++);
215 }
216
217 state.ResumeTiming();
218 container.erase(start, itr);
219 state.PauseTiming();
220
221 container.insert(removed.begin(), removed.end());
222 }
223 state.ResumeTiming();
224 }
225 }
226
227 // Predicate that erases every other element. We can't use a lambda because
228 // C++11 doesn't support generic lambdas.
229 // TODO(b/207389011): consider adding benchmarks that remove different fractions
230 // of keys (e.g. 10%, 90%).
231 struct EraseIfPred {
232 uint64_t i = 0;
233 template <typename T>
operator ()absl::container_internal::__anon98250b490111::EraseIfPred234 bool operator()(const T&) {
235 return ++i % 2;
236 }
237 };
238
239 // Benchmark erasing multiple values from a container with a predicate.
240 template <typename T>
BM_EraseIf(benchmark::State & state)241 void BM_EraseIf(benchmark::State& state) {
242 using V = typename remove_pair_const<typename T::value_type>::type;
243 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
244
245 // Removes half of the keys per batch.
246 const int batch_size = (kBenchmarkValues + 1) / 2;
247 EraseIfPred pred;
248 while (state.KeepRunningBatch(batch_size)) {
249 state.PauseTiming();
250 {
251 T container(values.begin(), values.end());
252 state.ResumeTiming();
253 erase_if(container, pred);
254 benchmark::DoNotOptimize(container);
255 state.PauseTiming();
256 }
257 state.ResumeTiming();
258 }
259 }
260
261 // Benchmark steady-state insert (into first half of range) and remove (from
262 // second half of range), treating the container approximately like a queue with
263 // log-time access for all elements. This benchmark does not test the case where
264 // insertion and removal happen in the same region of the tree. This benchmark
265 // counts two value constructors.
266 template <typename T>
BM_QueueAddRem(benchmark::State & state)267 void BM_QueueAddRem(benchmark::State& state) {
268 using V = typename remove_pair_const<typename T::value_type>::type;
269 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
270
271 ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
272
273 T container;
274
275 const size_t half = kBenchmarkValues / 2;
276 std::vector<int> remove_keys(half);
277 std::vector<int> add_keys(half);
278
279 // We want to do the exact same work repeatedly, and the benchmark can end
280 // after a different number of iterations depending on the speed of the
281 // individual run so we use a large batch size here and ensure that we do
282 // deterministic work every batch.
283 while (state.KeepRunningBatch(half * kAddRemBatchSize)) {
284 state.PauseTiming();
285
286 container.clear();
287
288 for (size_t i = 0; i < half; ++i) {
289 remove_keys[i] = i;
290 add_keys[i] = i;
291 }
292 constexpr int kSeed = 5;
293 std::mt19937_64 rand(kSeed);
294 std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
295 std::shuffle(add_keys.begin(), add_keys.end(), rand);
296
297 // Note needs lazy generation of values.
298 Generator<V> g(kBenchmarkValues * kAddRemBatchSize);
299
300 for (size_t i = 0; i < half; ++i) {
301 container.insert(g(add_keys[i]));
302 container.insert(g(half + remove_keys[i]));
303 }
304
305 // There are three parts each of size "half":
306 // 1 is being deleted from [offset - half, offset)
307 // 2 is standing [offset, offset + half)
308 // 3 is being inserted into [offset + half, offset + 2 * half)
309 size_t offset = 0;
310
311 for (size_t i = 0; i < kAddRemBatchSize; ++i) {
312 std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
313 std::shuffle(add_keys.begin(), add_keys.end(), rand);
314 offset += half;
315
316 state.ResumeTiming();
317 for (size_t idx = 0; idx < half; ++idx) {
318 container.erase(key_of_value(g(offset - half + remove_keys[idx])));
319 container.insert(g(offset + half + add_keys[idx]));
320 }
321 state.PauseTiming();
322 }
323 state.ResumeTiming();
324 }
325 }
326
327 // Mixed insertion and deletion in the same range using pre-constructed values.
328 template <typename T>
BM_MixedAddRem(benchmark::State & state)329 void BM_MixedAddRem(benchmark::State& state) {
330 using V = typename remove_pair_const<typename T::value_type>::type;
331 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
332
333 ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
334
335 T container;
336
337 // Create two random shuffles
338 std::vector<int> remove_keys(kBenchmarkValues);
339 std::vector<int> add_keys(kBenchmarkValues);
340
341 // We want to do the exact same work repeatedly, and the benchmark can end
342 // after a different number of iterations depending on the speed of the
343 // individual run so we use a large batch size here and ensure that we do
344 // deterministic work every batch.
345 while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) {
346 state.PauseTiming();
347
348 container.clear();
349
350 constexpr int kSeed = 7;
351 std::mt19937_64 rand(kSeed);
352
353 std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2);
354
355 // Insert the first half of the values (already in random order)
356 container.insert(values.begin(), values.begin() + kBenchmarkValues);
357
358 // Insert the first half of the values (already in random order)
359 for (size_t i = 0; i < kBenchmarkValues; ++i) {
360 // remove_keys and add_keys will be swapped before each round,
361 // therefore fill add_keys here w/ the keys being inserted, so
362 // they'll be the first to be removed.
363 remove_keys[i] = i + kBenchmarkValues;
364 add_keys[i] = i;
365 }
366
367 for (size_t i = 0; i < kAddRemBatchSize; ++i) {
368 remove_keys.swap(add_keys);
369 std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
370 std::shuffle(add_keys.begin(), add_keys.end(), rand);
371
372 state.ResumeTiming();
373 for (size_t idx = 0; idx < kBenchmarkValues; ++idx) {
374 container.erase(key_of_value(values[remove_keys[idx]]));
375 container.insert(values[add_keys[idx]]);
376 }
377 state.PauseTiming();
378 }
379 state.ResumeTiming();
380 }
381 }
382
383 // Insertion at end, removal from the beginning. This benchmark
384 // counts two value constructors.
385 // TODO(ezb): we could add a GenerateNext version of generator that could reduce
386 // noise for string-like types.
387 template <typename T>
BM_Fifo(benchmark::State & state)388 void BM_Fifo(benchmark::State& state) {
389 using V = typename remove_pair_const<typename T::value_type>::type;
390
391 T container;
392 // Need lazy generation of values as state.max_iterations is large.
393 Generator<V> g(kBenchmarkValues + state.max_iterations);
394
395 for (int i = 0; i < kBenchmarkValues; i++) {
396 container.insert(g(i));
397 }
398
399 while (state.KeepRunning()) {
400 container.erase(container.begin());
401 container.insert(container.end(), g(state.iterations() + kBenchmarkValues));
402 }
403 }
404
405 // Iteration (forward) through the tree
406 template <typename T>
BM_FwdIter(benchmark::State & state)407 void BM_FwdIter(benchmark::State& state) {
408 using V = typename remove_pair_const<typename T::value_type>::type;
409 using R = typename T::value_type const*;
410
411 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
412 T container(values.begin(), values.end());
413
414 auto iter = container.end();
415
416 R r = nullptr;
417
418 while (state.KeepRunning()) {
419 if (iter == container.end()) iter = container.begin();
420 r = &(*iter);
421 ++iter;
422 }
423
424 benchmark::DoNotOptimize(r);
425 }
426
427 // Benchmark random range-construction of a container.
428 template <typename T>
BM_RangeConstructionImpl(benchmark::State & state,bool sorted)429 void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) {
430 using V = typename remove_pair_const<typename T::value_type>::type;
431
432 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
433 if (sorted) {
434 std::sort(values.begin(), values.end());
435 }
436 {
437 T container(values.begin(), values.end());
438 }
439
440 while (state.KeepRunning()) {
441 T container(values.begin(), values.end());
442 benchmark::DoNotOptimize(container);
443 }
444 }
445
446 template <typename T>
BM_InsertRangeRandom(benchmark::State & state)447 void BM_InsertRangeRandom(benchmark::State& state) {
448 BM_RangeConstructionImpl<T>(state, false);
449 }
450
451 template <typename T>
BM_InsertRangeSorted(benchmark::State & state)452 void BM_InsertRangeSorted(benchmark::State& state) {
453 BM_RangeConstructionImpl<T>(state, true);
454 }
455
456 #define STL_ORDERED_TYPES(value) \
457 using stl_set_##value = std::set<value>; \
458 using stl_map_##value = std::map<value, intptr_t>; \
459 using stl_multiset_##value = std::multiset<value>; \
460 using stl_multimap_##value = std::multimap<value, intptr_t>
461
462 using StdString = std::string;
463 STL_ORDERED_TYPES(int32_t);
464 STL_ORDERED_TYPES(int64_t);
465 STL_ORDERED_TYPES(StdString);
466 STL_ORDERED_TYPES(Cord);
467 STL_ORDERED_TYPES(Time);
468
469 #define STL_UNORDERED_TYPES(value) \
470 using stl_unordered_set_##value = std::unordered_set<value>; \
471 using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \
472 using flat_hash_set_##value = flat_hash_set<value>; \
473 using flat_hash_map_##value = flat_hash_map<value, intptr_t>; \
474 using stl_unordered_multiset_##value = std::unordered_multiset<value>; \
475 using stl_unordered_multimap_##value = \
476 std::unordered_multimap<value, intptr_t>
477
478 #define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash) \
479 using stl_unordered_set_##value = std::unordered_set<value, hash>; \
480 using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \
481 using flat_hash_set_##value = flat_hash_set<value, hash>; \
482 using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>; \
483 using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \
484 using stl_unordered_multimap_##value = \
485 std::unordered_multimap<value, intptr_t, hash>
486
487 STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>);
488
489 STL_UNORDERED_TYPES(int32_t);
490 STL_UNORDERED_TYPES(int64_t);
491 STL_UNORDERED_TYPES(StdString);
492 STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>);
493
494 #define BTREE_TYPES(value) \
495 using btree_256_set_##value = \
496 btree_set<value, std::less<value>, std::allocator<value>>; \
497 using btree_256_map_##value = \
498 btree_map<value, intptr_t, std::less<value>, \
499 std::allocator<std::pair<const value, intptr_t>>>; \
500 using btree_256_multiset_##value = \
501 btree_multiset<value, std::less<value>, std::allocator<value>>; \
502 using btree_256_multimap_##value = \
503 btree_multimap<value, intptr_t, std::less<value>, \
504 std::allocator<std::pair<const value, intptr_t>>>
505
506 BTREE_TYPES(int32_t);
507 BTREE_TYPES(int64_t);
508 BTREE_TYPES(StdString);
509 BTREE_TYPES(Cord);
510 BTREE_TYPES(Time);
511
512 #define MY_BENCHMARK4(type, func) \
513 void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \
514 BENCHMARK(BM_##type##_##func)
515
516 #define MY_BENCHMARK3_STL(type) \
517 MY_BENCHMARK4(type, Insert); \
518 MY_BENCHMARK4(type, InsertSorted); \
519 MY_BENCHMARK4(type, InsertSmall); \
520 MY_BENCHMARK4(type, Lookup); \
521 MY_BENCHMARK4(type, FullLookup); \
522 MY_BENCHMARK4(type, Erase); \
523 MY_BENCHMARK4(type, EraseRange); \
524 MY_BENCHMARK4(type, QueueAddRem); \
525 MY_BENCHMARK4(type, MixedAddRem); \
526 MY_BENCHMARK4(type, Fifo); \
527 MY_BENCHMARK4(type, FwdIter); \
528 MY_BENCHMARK4(type, InsertRangeRandom); \
529 MY_BENCHMARK4(type, InsertRangeSorted)
530
531 #define MY_BENCHMARK3(type) \
532 MY_BENCHMARK4(type, EraseIf); \
533 MY_BENCHMARK3_STL(type)
534
535 #define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \
536 MY_BENCHMARK3_STL(stl_##type); \
537 MY_BENCHMARK3_STL(stl_unordered_##type); \
538 MY_BENCHMARK3(btree_256_##type)
539
540 #define MY_BENCHMARK2(type) \
541 MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \
542 MY_BENCHMARK3(flat_hash_##type)
543
544 // Define MULTI_TESTING to see benchmarks for multi-containers also.
545 //
546 // You can use --copt=-DMULTI_TESTING.
547 #ifdef MULTI_TESTING
548 #define MY_BENCHMARK(type) \
549 MY_BENCHMARK2(set_##type); \
550 MY_BENCHMARK2(map_##type); \
551 MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \
552 MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type)
553 #else
554 #define MY_BENCHMARK(type) \
555 MY_BENCHMARK2(set_##type); \
556 MY_BENCHMARK2(map_##type)
557 #endif
558
559 MY_BENCHMARK(int32_t);
560 MY_BENCHMARK(int64_t);
561 MY_BENCHMARK(StdString);
562 MY_BENCHMARK(Cord);
563 MY_BENCHMARK(Time);
564
565 // Define a type whose size and cost of moving are independently customizable.
566 // When sizeof(value_type) increases, we expect btree to no longer have as much
567 // cache-locality advantage over STL. When cost of moving increases, we expect
568 // btree to actually do more work than STL because it has to move values around
569 // and STL doesn't have to.
570 template <int Size, int Copies>
571 struct BigType {
BigTypeabsl::container_internal::__anon98250b490111::BigType572 BigType() : BigType(0) {}
BigTypeabsl::container_internal::__anon98250b490111::BigType573 explicit BigType(int x) { std::iota(values.begin(), values.end(), x); }
574
Copyabsl::container_internal::__anon98250b490111::BigType575 void Copy(const BigType& other) {
576 for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i];
577 // If Copies > Size, do extra copies.
578 for (int i = Size, idx = 0; i < Copies; ++i) {
579 int64_t tmp = other.values[idx];
580 benchmark::DoNotOptimize(tmp);
581 idx = idx + 1 == Size ? 0 : idx + 1;
582 }
583 }
584
BigTypeabsl::container_internal::__anon98250b490111::BigType585 BigType(const BigType& other) { Copy(other); }
operator =absl::container_internal::__anon98250b490111::BigType586 BigType& operator=(const BigType& other) {
587 Copy(other);
588 return *this;
589 }
590
591 // Compare only the first Copies elements if Copies is less than Size.
operator <absl::container_internal::__anon98250b490111::BigType592 bool operator<(const BigType& other) const {
593 return std::lexicographical_compare(
594 values.begin(), values.begin() + std::min(Size, Copies),
595 other.values.begin(), other.values.begin() + std::min(Size, Copies));
596 }
operator ==absl::container_internal::__anon98250b490111::BigType597 bool operator==(const BigType& other) const {
598 return std::equal(values.begin(), values.begin() + std::min(Size, Copies),
599 other.values.begin());
600 }
601
602 // Support absl::Hash.
603 template <typename State>
AbslHashValue(State h,const BigType & b)604 friend State AbslHashValue(State h, const BigType& b) {
605 for (int i = 0; i < Size && i < Copies; ++i)
606 h = State::combine(std::move(h), b.values[i]);
607 return h;
608 }
609
610 std::array<int64_t, Size> values;
611 };
612
613 #define BIG_TYPE_BENCHMARKS(SIZE, COPIES) \
614 using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \
615 using stl_map_size##SIZE##copies##COPIES = \
616 std::map<BigType<SIZE, COPIES>, intptr_t>; \
617 using stl_multiset_size##SIZE##copies##COPIES = \
618 std::multiset<BigType<SIZE, COPIES>>; \
619 using stl_multimap_size##SIZE##copies##COPIES = \
620 std::multimap<BigType<SIZE, COPIES>, intptr_t>; \
621 using stl_unordered_set_size##SIZE##copies##COPIES = \
622 std::unordered_set<BigType<SIZE, COPIES>, \
623 absl::Hash<BigType<SIZE, COPIES>>>; \
624 using stl_unordered_map_size##SIZE##copies##COPIES = \
625 std::unordered_map<BigType<SIZE, COPIES>, intptr_t, \
626 absl::Hash<BigType<SIZE, COPIES>>>; \
627 using flat_hash_set_size##SIZE##copies##COPIES = \
628 flat_hash_set<BigType<SIZE, COPIES>>; \
629 using flat_hash_map_size##SIZE##copies##COPIES = \
630 flat_hash_map<BigType<SIZE, COPIES>, intptr_t>; \
631 using stl_unordered_multiset_size##SIZE##copies##COPIES = \
632 std::unordered_multiset<BigType<SIZE, COPIES>, \
633 absl::Hash<BigType<SIZE, COPIES>>>; \
634 using stl_unordered_multimap_size##SIZE##copies##COPIES = \
635 std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t, \
636 absl::Hash<BigType<SIZE, COPIES>>>; \
637 using btree_256_set_size##SIZE##copies##COPIES = \
638 btree_set<BigType<SIZE, COPIES>>; \
639 using btree_256_map_size##SIZE##copies##COPIES = \
640 btree_map<BigType<SIZE, COPIES>, intptr_t>; \
641 using btree_256_multiset_size##SIZE##copies##COPIES = \
642 btree_multiset<BigType<SIZE, COPIES>>; \
643 using btree_256_multimap_size##SIZE##copies##COPIES = \
644 btree_multimap<BigType<SIZE, COPIES>, intptr_t>; \
645 MY_BENCHMARK(size##SIZE##copies##COPIES)
646
647 // Define BIG_TYPE_TESTING to see benchmarks for more big types.
648 //
649 // You can use --copt=-DBIG_TYPE_TESTING.
650 #ifndef NODESIZE_TESTING
651 #ifdef BIG_TYPE_TESTING
652 BIG_TYPE_BENCHMARKS(1, 4);
653 BIG_TYPE_BENCHMARKS(4, 1);
654 BIG_TYPE_BENCHMARKS(4, 4);
655 BIG_TYPE_BENCHMARKS(1, 8);
656 BIG_TYPE_BENCHMARKS(8, 1);
657 BIG_TYPE_BENCHMARKS(8, 8);
658 BIG_TYPE_BENCHMARKS(1, 16);
659 BIG_TYPE_BENCHMARKS(16, 1);
660 BIG_TYPE_BENCHMARKS(16, 16);
661 BIG_TYPE_BENCHMARKS(1, 32);
662 BIG_TYPE_BENCHMARKS(32, 1);
663 BIG_TYPE_BENCHMARKS(32, 32);
664 #else
665 BIG_TYPE_BENCHMARKS(32, 32);
666 #endif
667 #endif
668
669 // Benchmark using unique_ptrs to large value types. In order to be able to use
670 // the same benchmark code as the other types, use a type that holds a
671 // unique_ptr and has a copy constructor.
672 template <int Size>
673 struct BigTypePtr {
BigTypePtrabsl::container_internal::__anon98250b490111::BigTypePtr674 BigTypePtr() : BigTypePtr(0) {}
BigTypePtrabsl::container_internal::__anon98250b490111::BigTypePtr675 explicit BigTypePtr(int x) {
676 ptr = absl::make_unique<BigType<Size, Size>>(x);
677 }
BigTypePtrabsl::container_internal::__anon98250b490111::BigTypePtr678 BigTypePtr(const BigTypePtr& other) {
679 ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
680 }
681 BigTypePtr(BigTypePtr&& other) noexcept = default;
operator =absl::container_internal::__anon98250b490111::BigTypePtr682 BigTypePtr& operator=(const BigTypePtr& other) {
683 ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
684 }
685 BigTypePtr& operator=(BigTypePtr&& other) noexcept = default;
686
operator <absl::container_internal::__anon98250b490111::BigTypePtr687 bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; }
operator ==absl::container_internal::__anon98250b490111::BigTypePtr688 bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; }
689
690 std::unique_ptr<BigType<Size, Size>> ptr;
691 };
692
693 template <int Size>
ContainerInfo(const btree_set<BigTypePtr<Size>> & b)694 double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) {
695 const double bytes_used =
696 b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
697 const double bytes_per_value = bytes_used / b.size();
698 BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
699 return bytes_per_value;
700 }
701 template <int Size>
ContainerInfo(const btree_map<int,BigTypePtr<Size>> & b)702 double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) {
703 const double bytes_used =
704 b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
705 const double bytes_per_value = bytes_used / b.size();
706 BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
707 return bytes_per_value;
708 }
709
710 #define BIG_TYPE_PTR_BENCHMARKS(SIZE) \
711 using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \
712 using stl_map_size##SIZE##copies##SIZE##ptr = \
713 std::map<int, BigType<SIZE, SIZE>>; \
714 using stl_unordered_set_size##SIZE##copies##SIZE##ptr = \
715 std::unordered_set<BigType<SIZE, SIZE>, \
716 absl::Hash<BigType<SIZE, SIZE>>>; \
717 using stl_unordered_map_size##SIZE##copies##SIZE##ptr = \
718 std::unordered_map<int, BigType<SIZE, SIZE>>; \
719 using flat_hash_set_size##SIZE##copies##SIZE##ptr = \
720 flat_hash_set<BigType<SIZE, SIZE>>; \
721 using flat_hash_map_size##SIZE##copies##SIZE##ptr = \
722 flat_hash_map<int, BigTypePtr<SIZE>>; \
723 using btree_256_set_size##SIZE##copies##SIZE##ptr = \
724 btree_set<BigTypePtr<SIZE>>; \
725 using btree_256_map_size##SIZE##copies##SIZE##ptr = \
726 btree_map<int, BigTypePtr<SIZE>>; \
727 MY_BENCHMARK3_STL(stl_set_size##SIZE##copies##SIZE##ptr); \
728 MY_BENCHMARK3_STL(stl_unordered_set_size##SIZE##copies##SIZE##ptr); \
729 MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr); \
730 MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr); \
731 MY_BENCHMARK3_STL(stl_map_size##SIZE##copies##SIZE##ptr); \
732 MY_BENCHMARK3_STL(stl_unordered_map_size##SIZE##copies##SIZE##ptr); \
733 MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr); \
734 MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr)
735
736 BIG_TYPE_PTR_BENCHMARKS(32);
737
BM_BtreeSet_IteratorSubtraction(benchmark::State & state)738 void BM_BtreeSet_IteratorSubtraction(benchmark::State& state) {
739 absl::InsecureBitGen bitgen;
740 std::vector<int> vec;
741 // Randomize the set's insertion order so the nodes aren't all full.
742 vec.reserve(state.range(0));
743 for (int i = 0; i < state.range(0); ++i) vec.push_back(i);
744 absl::c_shuffle(vec, bitgen);
745
746 absl::btree_set<int> set;
747 for (int i : vec) set.insert(i);
748
749 size_t distance = absl::Uniform(bitgen, 0u, set.size());
750 while (state.KeepRunningBatch(distance)) {
751 size_t end = absl::Uniform(bitgen, distance, set.size());
752 size_t begin = end - distance;
753 benchmark::DoNotOptimize(set.find(static_cast<int>(end)) -
754 set.find(static_cast<int>(begin)));
755 distance = absl::Uniform(bitgen, 0u, set.size());
756 }
757 }
758
759 BENCHMARK(BM_BtreeSet_IteratorSubtraction)->Range(1 << 10, 1 << 20);
760
761 } // namespace
762 } // namespace container_internal
763 ABSL_NAMESPACE_END
764 } // namespace absl
765