xref: /aosp_15_r20/external/aac/libAACdec/src/ldfiltbank.cpp (revision e54365361535b070c2db7374cec45c159c7d0e7a)
1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 [email protected]
93 ----------------------------------------------------------------------------- */
94 
95 /**************************** AAC decoder library ******************************
96 
97    Author(s):
98 
99    Description: low delay filterbank
100 
101 *******************************************************************************/
102 
103 #include "ldfiltbank.h"
104 
105 #include "aac_rom.h"
106 #include "dct.h"
107 #include "FDK_tools_rom.h"
108 #include "mdct.h"
109 
110 #define LDFB_HEADROOM 2
111 
112 #if defined(__arm__)
113 #endif
114 
multE2_DinvF_fdk(PCM_DEC * output,FIXP_DBL * x,const FIXP_WTB * fb,FIXP_DBL * z,const int N)115 static void multE2_DinvF_fdk(PCM_DEC *output, FIXP_DBL *x, const FIXP_WTB *fb,
116                              FIXP_DBL *z, const int N) {
117   int i;
118 
119   /*  scale for FIXP_DBL -> PCM_DEC conversion:       */
120   const int scale = (DFRACT_BITS - PCM_OUT_BITS) - LDFB_HEADROOM + (3);
121 
122 #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0)
123   FIXP_DBL rnd_val_wts0 = (FIXP_DBL)0;
124   FIXP_DBL rnd_val_wts1 = (FIXP_DBL)0;
125 #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - WTS0 - 1) > 0)
126   if (-WTS0 - 1 + scale)
127     rnd_val_wts0 = (FIXP_DBL)(1 << (-WTS0 - 1 + scale - 1));
128 #endif
129   if (-WTS1 - 1 + scale)
130     rnd_val_wts1 = (FIXP_DBL)(1 << (-WTS1 - 1 + scale - 1));
131 #endif
132 
133   for (i = 0; i < N / 4; i++) {
134     FIXP_DBL z0, z2, tmp;
135 
136     z2 = x[N / 2 + i];
137     z0 = fAddSaturate(z2,
138                       (fMultDiv2(z[N / 2 + i], fb[2 * N + i]) >> (-WTS2 - 1)));
139 
140     z[N / 2 + i] = fAddSaturate(
141         x[N / 2 - 1 - i],
142         (fMultDiv2(z[N + i], fb[2 * N + N / 2 + i]) >> (-WTS2 - 1)));
143 
144     tmp = (fMultDiv2(z[N / 2 + i], fb[N + N / 2 - 1 - i]) +
145            fMultDiv2(z[i], fb[N + N / 2 + i]));
146 
147 #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0)
148     FDK_ASSERT((-WTS1 - 1 + scale) >= 0);
149     FDK_ASSERT(tmp <= ((FIXP_DBL)0x7FFFFFFF -
150                        rnd_val_wts1)); /* rounding must not cause overflow */
151     output[(N * 3 / 4 - 1 - i)] = (PCM_DEC)SATURATE_RIGHT_SHIFT(
152         tmp + rnd_val_wts1, -WTS1 - 1 + scale, PCM_OUT_BITS);
153 #else
154     FDK_ASSERT((WTS1 + 1 - scale) >= 0);
155     output[(N * 3 / 4 - 1 - i)] =
156         (PCM_DEC)SATURATE_LEFT_SHIFT(tmp, WTS1 + 1 - scale, PCM_OUT_BITS);
157 #endif
158 
159     z[i] = z0;
160     z[N + i] = z2;
161   }
162 
163   for (i = N / 4; i < N / 2; i++) {
164     FIXP_DBL z0, z2, tmp0, tmp1;
165 
166     z2 = x[N / 2 + i];
167     z0 = fAddSaturate(z2,
168                       (fMultDiv2(z[N / 2 + i], fb[2 * N + i]) >> (-WTS2 - 1)));
169 
170     z[N / 2 + i] = fAddSaturate(
171         x[N / 2 - 1 - i],
172         (fMultDiv2(z[N + i], fb[2 * N + N / 2 + i]) >> (-WTS2 - 1)));
173 
174     tmp0 = (fMultDiv2(z[N / 2 + i], fb[N / 2 - 1 - i]) +
175             fMultDiv2(z[i], fb[N / 2 + i]));
176     tmp1 = (fMultDiv2(z[N / 2 + i], fb[N + N / 2 - 1 - i]) +
177             fMultDiv2(z[i], fb[N + N / 2 + i]));
178 
179 #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0)
180     FDK_ASSERT((-WTS0 - 1 + scale) >= 0);
181     FDK_ASSERT(tmp0 <= ((FIXP_DBL)0x7FFFFFFF -
182                         rnd_val_wts0)); /* rounding must not cause overflow */
183     FDK_ASSERT(tmp1 <= ((FIXP_DBL)0x7FFFFFFF -
184                         rnd_val_wts1)); /* rounding must not cause overflow */
185     output[(i - N / 4)] = (PCM_DEC)SATURATE_RIGHT_SHIFT(
186         tmp0 + rnd_val_wts0, -WTS0 - 1 + scale, PCM_OUT_BITS);
187     output[(N * 3 / 4 - 1 - i)] = (PCM_DEC)SATURATE_RIGHT_SHIFT(
188         tmp1 + rnd_val_wts1, -WTS1 - 1 + scale, PCM_OUT_BITS);
189 #else
190     FDK_ASSERT((WTS0 + 1 - scale) >= 0);
191     output[(i - N / 4)] =
192         (PCM_DEC)SATURATE_LEFT_SHIFT(tmp0, WTS0 + 1 - scale, PCM_OUT_BITS);
193     output[(N * 3 / 4 - 1 - i)] =
194         (PCM_DEC)SATURATE_LEFT_SHIFT(tmp1, WTS1 + 1 - scale, PCM_OUT_BITS);
195 #endif
196     z[i] = z0;
197     z[N + i] = z2;
198   }
199 
200   /* Exchange quarter parts of x to bring them in the "right" order */
201   for (i = 0; i < N / 4; i++) {
202     FIXP_DBL tmp0 = fMultDiv2(z[i], fb[N / 2 + i]);
203 
204 #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0)
205     FDK_ASSERT((-WTS0 - 1 + scale) >= 0);
206     FDK_ASSERT(tmp0 <= ((FIXP_DBL)0x7FFFFFFF -
207                         rnd_val_wts0)); /* rounding must not cause overflow */
208     output[(N * 3 / 4 + i)] = (PCM_DEC)SATURATE_RIGHT_SHIFT(
209         tmp0 + rnd_val_wts0, -WTS0 - 1 + scale, PCM_OUT_BITS);
210 #else
211     FDK_ASSERT((WTS0 + 1 - scale) >= 0);
212     output[(N * 3 / 4 + i)] =
213         (PCM_DEC)SATURATE_LEFT_SHIFT(tmp0, WTS0 + 1 - scale, PCM_OUT_BITS);
214 #endif
215   }
216 }
217 
InvMdctTransformLowDelay_fdk(FIXP_DBL * mdctData,const int mdctData_e,PCM_DEC * output,FIXP_DBL * fs_buffer,const int N)218 int InvMdctTransformLowDelay_fdk(FIXP_DBL *mdctData, const int mdctData_e,
219                                  PCM_DEC *output, FIXP_DBL *fs_buffer,
220                                  const int N) {
221   const FIXP_WTB *coef;
222   FIXP_DBL gain = (FIXP_DBL)0;
223   int scale = mdctData_e + MDCT_OUT_HEADROOM -
224               LDFB_HEADROOM; /* The LDFB_HEADROOM is compensated inside
225                                 multE2_DinvF_fdk() below */
226   int i;
227 
228   /* Select LD window slope */
229   switch (N) {
230     case 256:
231       coef = LowDelaySynthesis256;
232       break;
233     case 240:
234       coef = LowDelaySynthesis240;
235       break;
236     case 160:
237       coef = LowDelaySynthesis160;
238       break;
239     case 128:
240       coef = LowDelaySynthesis128;
241       break;
242     case 120:
243       coef = LowDelaySynthesis120;
244       break;
245     case 512:
246       coef = LowDelaySynthesis512;
247       break;
248     case 480:
249     default:
250       coef = LowDelaySynthesis480;
251       break;
252   }
253 
254   /*
255      Apply exponent and 1/N factor.
256      Note: "scale" is off by one because for LD_MDCT the window length is twice
257      the window length of a regular MDCT. This is corrected inside
258      multE2_DinvF_fdk(). Refer to ISO/IEC 14496-3:2009 page 277,
259      chapter 4.6.20.2 "Low Delay Window".
260    */
261   imdct_gain(&gain, &scale, N);
262 
263   dct_IV(mdctData, N, &scale);
264 
265   if (N == 256 || N == 240 || N == 160) {
266     scale -= 1;
267   } else if (N == 128 || N == 120) {
268     scale -= 2;
269   }
270 
271   if (gain != (FIXP_DBL)0) {
272     for (i = 0; i < N; i++) {
273       mdctData[i] = fMult(mdctData[i], gain);
274     }
275   }
276   scaleValuesSaturate(mdctData, N, scale);
277 
278   /* Since all exponent and factors have been applied, current exponent is zero.
279    */
280   multE2_DinvF_fdk(output, mdctData, coef, fs_buffer, N);
281 
282   return (1);
283 }
284