1 // Copyright 2022 Google LLC 2 // 3 // This source code is licensed under the BSD-style license found in the 4 // LICENSE file in the root directory of this source tree. 5 6 #pragma once 7 8 #include <gtest/gtest.h> 9 10 #include <algorithm> 11 #include <cassert> 12 #include <cmath> 13 #include <cstddef> 14 #include <cstdlib> 15 #include <functional> 16 #include <limits> 17 #include <random> 18 #include <vector> 19 20 #include <xnnpack.h> 21 #include <xnnpack/math.h> 22 #include <xnnpack/microfnptr.h> 23 #include <xnnpack/microparams-init.h> 24 25 26 class VLReLUMicrokernelTester { 27 public: batch_size(size_t batch_size)28 inline VLReLUMicrokernelTester& batch_size(size_t batch_size) { 29 assert(batch_size != 0); 30 this->batch_size_ = batch_size; 31 return *this; 32 } 33 batch_size()34 inline size_t batch_size() const { 35 return this->batch_size_; 36 } 37 positive_scale(float positive_scale)38 inline VLReLUMicrokernelTester& positive_scale(float positive_scale) { 39 assert(positive_scale > 0.0f); 40 assert(std::isnormal(positive_scale)); 41 this->positive_scale_ = positive_scale; 42 return *this; 43 } 44 positive_scale()45 inline float positive_scale() const { 46 return this->positive_scale_; 47 } 48 negative_scale(float negative_scale)49 inline VLReLUMicrokernelTester& negative_scale(float negative_scale) { 50 assert(std::isnormal(negative_scale)); 51 this->negative_scale_ = negative_scale; 52 return *this; 53 } 54 negative_scale()55 inline float negative_scale() const { 56 return this->negative_scale_; 57 } 58 input_zero_point(int16_t input_zero_point)59 inline VLReLUMicrokernelTester& input_zero_point(int16_t input_zero_point) { 60 this->input_zero_point_ = input_zero_point; 61 return *this; 62 } 63 input_zero_point()64 inline int16_t input_zero_point() const { 65 return this->input_zero_point_; 66 } 67 output_zero_point(int16_t output_zero_point)68 inline VLReLUMicrokernelTester& output_zero_point(int16_t output_zero_point) { 69 this->output_zero_point_ = output_zero_point; 70 return *this; 71 } 72 output_zero_point()73 inline int16_t output_zero_point() const { 74 return this->output_zero_point_; 75 } 76 iterations(size_t iterations)77 inline VLReLUMicrokernelTester& iterations(size_t iterations) { 78 this->iterations_ = iterations; 79 return *this; 80 } 81 iterations()82 inline size_t iterations() const { 83 return this->iterations_; 84 } 85 Test(xnn_qs8_vlrelu_ukernel_function vlrelu,xnn_init_qs8_lrelu_params_fn init_params)86 void Test(xnn_qs8_vlrelu_ukernel_function vlrelu, xnn_init_qs8_lrelu_params_fn init_params) const { 87 ASSERT_GE(input_zero_point(), std::numeric_limits<int8_t>::min()); 88 ASSERT_LE(input_zero_point(), std::numeric_limits<int8_t>::max()); 89 ASSERT_GE(output_zero_point(), std::numeric_limits<int8_t>::min()); 90 ASSERT_LE(output_zero_point(), std::numeric_limits<int8_t>::max()); 91 92 std::random_device random_device; 93 auto rng = std::mt19937(random_device()); 94 std::uniform_int_distribution<int32_t> i8dist( 95 std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()); 96 97 std::vector<int8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(int8_t)); 98 std::vector<int8_t> output(batch_size()); 99 std::vector<int8_t> output_ref(batch_size()); 100 for (size_t iteration = 0; iteration < iterations(); iteration++) { 101 std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); 102 std::fill(output.begin(), output.end(), INT8_C(0xA5)); 103 104 union xnn_qs8_lrelu_params params; 105 init_params(¶ms, positive_scale(), negative_scale(), input_zero_point(), output_zero_point()); 106 107 // Call optimized micro-kernel. 108 vlrelu(batch_size() * sizeof(int8_t), input.data(), output.data(), ¶ms); 109 110 // Compute reference results 111 const int32_t positive_multiplier = (int32_t) lrintf(-256.0f * positive_scale()); 112 const int32_t negative_multiplier = (int32_t) lrintf(-256.0f * negative_scale()); 113 for (size_t i = 0; i < batch_size(); i++) { 114 const int32_t input_value = (input_zero_point() - input[i]) << 7; 115 const int32_t multiplier = input_value <= 0 ? positive_multiplier : negative_multiplier; 116 int32_t output_value = math_asr_s32(input_value * multiplier + INT32_C(0x4000), 15) + output_zero_point(); 117 output_value = std::min<int32_t>(output_value, std::numeric_limits<int8_t>::max()); 118 output_value = std::max<int32_t>(output_value, std::numeric_limits<int8_t>::min()); 119 output_ref[i] = static_cast<int8_t>(output_value); 120 } 121 122 // Verify results. 123 for (size_t i = 0; i < batch_size(); i++) { 124 ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) 125 << "at " << i << " / " << batch_size() 126 << ", x[" << i << "] = " << int32_t(input[i]); 127 } 128 } 129 } 130 Test(xnn_qu8_vlrelu_ukernel_function vlrelu,xnn_init_qu8_lrelu_params_fn init_params)131 void Test(xnn_qu8_vlrelu_ukernel_function vlrelu, xnn_init_qu8_lrelu_params_fn init_params) const { 132 ASSERT_GE(input_zero_point(), std::numeric_limits<uint8_t>::min()); 133 ASSERT_LE(input_zero_point(), std::numeric_limits<uint8_t>::max()); 134 ASSERT_GE(output_zero_point(), std::numeric_limits<uint8_t>::min()); 135 ASSERT_LE(output_zero_point(), std::numeric_limits<uint8_t>::max()); 136 137 std::random_device random_device; 138 auto rng = std::mt19937(random_device()); 139 std::uniform_int_distribution<int32_t> u8dist( 140 std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); 141 142 std::vector<uint8_t> input(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); 143 std::vector<uint8_t> output(batch_size()); 144 std::vector<uint8_t> output_ref(batch_size()); 145 for (size_t iteration = 0; iteration < iterations(); iteration++) { 146 std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); 147 std::fill(output.begin(), output.end(), UINT8_C(0xA5)); 148 149 union xnn_qu8_lrelu_params params; 150 init_params(¶ms, positive_scale(), negative_scale(), input_zero_point(), output_zero_point()); 151 152 // Call optimized micro-kernel. 153 vlrelu(batch_size() * sizeof(uint8_t), input.data(), output.data(), ¶ms); 154 155 // Compute reference results 156 const int32_t positive_multiplier = (int32_t) lrintf(-256.0f * positive_scale()); 157 const int32_t negative_multiplier = (int32_t) lrintf(-256.0f * negative_scale()); 158 for (size_t i = 0; i < batch_size(); i++) { 159 const int32_t input_value = (input_zero_point() - input[i]) << 7; 160 const int32_t multiplier = input_value <= 0 ? positive_multiplier : negative_multiplier; 161 int32_t output_value = math_asr_s32(input_value * multiplier + INT32_C(0x4000), 15) + output_zero_point(); 162 output_value = std::min<int32_t>(output_value, std::numeric_limits<uint8_t>::max()); 163 output_value = std::max<int32_t>(output_value, std::numeric_limits<uint8_t>::min()); 164 output_ref[i] = static_cast<uint8_t>(output_value); 165 } 166 167 // Verify results. 168 for (size_t i = 0; i < batch_size(); i++) { 169 ASSERT_EQ(int32_t(output[i]), int32_t(output_ref[i])) 170 << "at " << i << " / " << batch_size() 171 << ", x[" << i << "] = " << int32_t(input[i]); 172 } 173 } 174 } 175 176 private: 177 float positive_scale_ = 1.75f; 178 float negative_scale_ = 0.75f; 179 int16_t input_zero_point_ = 1; 180 int16_t output_zero_point_ = 5; 181 size_t batch_size_ = 1; 182 size_t iterations_ = 15; 183 }; 184