xref: /aosp_15_r20/external/XNNPACK/test/subgraph-binary-tester.h (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <algorithm>
9 #include <array>
10 #include <functional>
11 #include <limits>
12 #include <memory>
13 #include <numeric>
14 #include <random>
15 #include <vector>
16 
17 #include <xnnpack.h>
18 #include <xnnpack/node-type.h>
19 #include <xnnpack/operator.h>
20 #include <xnnpack/requantization.h>
21 #include <xnnpack/subgraph.h>
22 
23 #include <gtest/gtest.h>
24 
25 template <typename T> class BinaryTest : public ::testing::Test {
26 protected:
BinaryTest()27   BinaryTest()
28   {
29     random_device = std::unique_ptr<std::random_device>(new std::random_device());
30     rng = std::mt19937((*random_device)());
31     shape_dist = std::uniform_int_distribution<size_t>(0, XNN_MAX_TENSOR_DIMS);
32     dim_dist = std::uniform_int_distribution<size_t>(1, 9);
33     f32dist = std::uniform_real_distribution<float>(0.01f, 1.0f);
34     i8dist =
35       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
36     u8dist =
37       std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
38     scale_dist = std::uniform_real_distribution<float>(0.1f, 5.0f);
39   }
40 
SetUp()41   void SetUp() override
42   {
43     std::vector<size_t> input1_shape = RandomShape();
44     std::vector<size_t> input2_shape;
45     std::vector<size_t> output_shape;
46     // Create input dimensions.
47     // Create input 2 with an equal or larger number of dimensions.
48     const size_t input2_num_dims = std::uniform_int_distribution<size_t>(input1_shape.size(), XNN_MAX_TENSOR_DIMS)(rng);
49     input2_shape = RandomShape(input2_num_dims);
50     // Ensure that the inputs dimensions match.
51     std::copy_backward(input1_shape.begin(), input1_shape.end(), input2_shape.end());
52 
53     // Choose a random dimension to broadcast for each input.
54     const size_t input1_broadcast_dim = std::uniform_int_distribution<size_t>(0, input1_shape.size())(rng);
55     if (input1_broadcast_dim < input1_shape.size()) {
56       input1_shape[input1_broadcast_dim] = 1;
57     }
58     const size_t input2_broadcast_dim = std::uniform_int_distribution<size_t>(0, input2_shape.size())(rng);
59     if (input2_broadcast_dim < input2_shape.size()) {
60       input2_shape[input2_broadcast_dim] = 1;
61     }
62     // Calculate generalized shapes.
63     std::fill(input1_dims.begin(), input1_dims.end(), 1);
64     std::fill(input2_dims.begin(), input2_dims.end(), 1);
65     std::fill(output_dims.begin(), output_dims.end(), 1);
66     std::copy_backward(input1_shape.cbegin(), input1_shape.cend(), input1_dims.end());
67     std::copy_backward(input2_shape.cbegin(), input2_shape.cend(), input2_dims.end());
68     for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
69       if (input1_dims[i] != 1 && input2_dims[i] != 1) {
70         ASSERT_EQ(input1_dims[i], input2_dims[i]) << "i: " << i;
71       }
72       output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
73     }
74 
75     input1 = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input1_shape));
76     input2 = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input2_shape));
77     operator_output = std::vector<T>(NumElements(output_dims));
78     subgraph_output = std::vector<T>(operator_output.size());
79   }
80 
RandomShape(size_t num_dims)81   std::vector<size_t> RandomShape(size_t num_dims)
82   {
83     std::vector<size_t> dims(num_dims);
84     std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
85     return dims;
86   }
87 
RandomShape()88   std::vector<size_t> RandomShape() { return RandomShape(shape_dist(rng)); }
89 
NumElements(std::vector<size_t> & dims)90   size_t NumElements(std::vector<size_t>& dims)
91   {
92     return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
93   }
94 
NumElements(std::array<size_t,XNN_MAX_TENSOR_DIMS> & dims)95   size_t NumElements(std::array<size_t, XNN_MAX_TENSOR_DIMS>& dims)
96   {
97     return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
98   }
99 
100   std::unique_ptr<std::random_device> random_device;
101   std::mt19937 rng;
102   std::uniform_int_distribution<size_t> shape_dist;
103   std::uniform_int_distribution<size_t> dim_dist;
104   std::uniform_real_distribution<float> f32dist;
105   std::uniform_real_distribution<float> scale_dist;
106   std::uniform_int_distribution<int32_t> i8dist;
107   std::uniform_int_distribution<int32_t> u8dist;
108 
109   float output_min = -std::numeric_limits<float>::infinity();
110   float output_max = std::numeric_limits<float>::infinity();
111 
112   std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims;
113   std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims;
114   std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
115 
116   std::vector<T> input1;
117   std::vector<T> input2;
118   std::vector<T> operator_output;
119   std::vector<T> subgraph_output;
120 };
121