xref: /aosp_15_r20/external/XNNPACK/test/square-operator-tester.h (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <algorithm>
11 #include <cassert>
12 #include <cstddef>
13 #include <cstdlib>
14 #include <random>
15 #include <vector>
16 
17 #include <fp16.h>
18 
19 #include <xnnpack.h>
20 
21 
22 class SquareOperatorTester {
23  public:
channels(size_t channels)24   inline SquareOperatorTester& channels(size_t channels) {
25     assert(channels != 0);
26     this->channels_ = channels;
27     return *this;
28   }
29 
channels()30   inline size_t channels() const {
31     return this->channels_;
32   }
33 
input_stride(size_t input_stride)34   inline SquareOperatorTester& input_stride(size_t input_stride) {
35     assert(input_stride != 0);
36     this->input_stride_ = input_stride;
37     return *this;
38   }
39 
input_stride()40   inline size_t input_stride() const {
41     if (this->input_stride_ == 0) {
42       return this->channels_;
43     } else {
44       assert(this->input_stride_ >= this->channels_);
45       return this->input_stride_;
46     }
47   }
48 
output_stride(size_t output_stride)49   inline SquareOperatorTester& output_stride(size_t output_stride) {
50     assert(output_stride != 0);
51     this->output_stride_ = output_stride;
52     return *this;
53   }
54 
output_stride()55   inline size_t output_stride() const {
56     if (this->output_stride_ == 0) {
57       return this->channels_;
58     } else {
59       assert(this->output_stride_ >= this->channels_);
60       return this->output_stride_;
61     }
62   }
63 
batch_size(size_t batch_size)64   inline SquareOperatorTester& batch_size(size_t batch_size) {
65     assert(batch_size != 0);
66     this->batch_size_ = batch_size;
67     return *this;
68   }
69 
batch_size()70   inline size_t batch_size() const {
71     return this->batch_size_;
72   }
73 
iterations(size_t iterations)74   inline SquareOperatorTester& iterations(size_t iterations) {
75     this->iterations_ = iterations;
76     return *this;
77   }
78 
iterations()79   inline size_t iterations() const {
80     return this->iterations_;
81   }
82 
TestF16()83   void TestF16() const {
84     std::random_device random_device;
85     auto rng = std::mt19937(random_device());
86     std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
87 
88     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
89       (batch_size() - 1) * input_stride() + channels());
90     std::vector<uint16_t> output((batch_size() - 1) * output_stride() + channels());
91     std::vector<float> output_ref(batch_size() * channels());
92     for (size_t iteration = 0; iteration < iterations(); iteration++) {
93       std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
94       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
95 
96       // Compute reference results.
97       for (size_t i = 0; i < batch_size(); i++) {
98         for (size_t c = 0; c < channels(); c++) {
99           const float value = fp16_ieee_to_fp32_value(input[i * input_stride() + c]);
100           output_ref[i * channels() + c] = value * value;
101         }
102       }
103 
104       // Create, setup, run, and destroy Square operator.
105       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
106       xnn_operator_t square_op = nullptr;
107 
108       const xnn_status status = xnn_create_square_nc_f16(
109         channels(), input_stride(), output_stride(),
110         0, &square_op);
111       if (status == xnn_status_unsupported_hardware) {
112         GTEST_SKIP();
113       }
114       ASSERT_EQ(xnn_status_success, status);
115       ASSERT_NE(nullptr, square_op);
116 
117       // Smart pointer to automatically delete square_op.
118       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_square_op(square_op, xnn_delete_operator);
119 
120       ASSERT_EQ(xnn_status_success,
121         xnn_setup_square_nc_f16(
122           square_op,
123           batch_size(),
124           input.data(), output.data(),
125           nullptr /* thread pool */));
126 
127       ASSERT_EQ(xnn_status_success,
128         xnn_run_operator(square_op, nullptr /* thread pool */));
129 
130       // Verify results.
131       for (size_t i = 0; i < batch_size(); i++) {
132         for (size_t c = 0; c < channels(); c++) {
133           ASSERT_NEAR(
134               fp16_ieee_to_fp32_value(output[i * output_stride() + c]),
135               output_ref[i * channels() + c],
136               std::max(1.0e-4f, std::abs(output_ref[i * channels() + c]) * 5.0e-3f))
137             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
138         }
139       }
140     }
141   }
142 
TestF32()143   void TestF32() const {
144     std::random_device random_device;
145     auto rng = std::mt19937(random_device());
146     std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
147 
148     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
149       (batch_size() - 1) * input_stride() + channels());
150     std::vector<float> output((batch_size() - 1) * output_stride() + channels());
151     std::vector<float> output_ref(batch_size() * channels());
152     for (size_t iteration = 0; iteration < iterations(); iteration++) {
153       std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
154       std::fill(output.begin(), output.end(), std::nanf(""));
155 
156       // Compute reference results.
157       for (size_t i = 0; i < batch_size(); i++) {
158         for (size_t c = 0; c < channels(); c++) {
159           const float value = input[i * input_stride() + c];
160           output_ref[i * channels() + c] = value * value;
161         }
162       }
163 
164       // Create, setup, run, and destroy Square operator.
165       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
166       xnn_operator_t square_op = nullptr;
167 
168       ASSERT_EQ(xnn_status_success,
169         xnn_create_square_nc_f32(
170           channels(), input_stride(), output_stride(),
171           0, &square_op));
172       ASSERT_NE(nullptr, square_op);
173 
174       // Smart pointer to automatically delete square_op.
175       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_square_op(square_op, xnn_delete_operator);
176 
177       ASSERT_EQ(xnn_status_success,
178         xnn_setup_square_nc_f32(
179           square_op,
180           batch_size(),
181           input.data(), output.data(),
182           nullptr /* thread pool */));
183 
184       ASSERT_EQ(xnn_status_success,
185         xnn_run_operator(square_op, nullptr /* thread pool */));
186 
187       // Verify results.
188       for (size_t i = 0; i < batch_size(); i++) {
189         for (size_t c = 0; c < channels(); c++) {
190           ASSERT_EQ(output_ref[i * channels() + c], output[i * output_stride() + c])
191             << "at batch " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
192         }
193       }
194     }
195   }
196 
197  private:
198   size_t batch_size_{1};
199   size_t channels_{1};
200   size_t input_stride_{0};
201   size_t output_stride_{0};
202   size_t iterations_{15};
203 };
204