1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #pragma once
7
8 #include <gtest/gtest.h>
9
10 #include <algorithm>
11 #include <cassert>
12 #include <cmath>
13 #include <cstddef>
14 #include <cstdlib>
15 #include <random>
16 #include <vector>
17
18 #include <fp16.h>
19
20 #include <xnnpack.h>
21 #include <xnnpack/aligned-allocator.h>
22 #include <xnnpack/microfnptr.h>
23 #include <xnnpack/microparams-init.h>
24
25
is_fp16_zero(uint16_t x)26 static inline bool is_fp16_zero(uint16_t x) {
27 const uint16_t two_x = x + x;
28 return two_x == 0;
29 }
30
31 class SpMMMicrokernelTester {
32 public:
mr(size_t mr)33 inline SpMMMicrokernelTester& mr(size_t mr) {
34 this->mr_ = mr;
35 return *this;
36 }
37
mr()38 inline size_t mr() const {
39 return this->mr_;
40 }
41
nr(size_t nr)42 inline SpMMMicrokernelTester& nr(size_t nr) {
43 this->nr_ = nr;
44 return *this;
45 }
46
nr()47 inline size_t nr() const {
48 return this->nr_;
49 }
50
m(size_t m)51 inline SpMMMicrokernelTester& m(size_t m) {
52 this->m_ = m;
53 return *this;
54 }
55
m()56 inline size_t m() const {
57 return this->m_;
58 }
59
n(size_t n)60 inline SpMMMicrokernelTester& n(size_t n) {
61 this->n_ = n;
62 return *this;
63 }
64
n()65 inline size_t n() const {
66 return this->n_;
67 }
68
k(size_t k)69 inline SpMMMicrokernelTester& k(size_t k) {
70 this->k_ = k;
71 return *this;
72 }
73
k()74 inline size_t k() const {
75 return this->k_;
76 }
77
output_stride(size_t output_stride)78 inline SpMMMicrokernelTester& output_stride(size_t output_stride) {
79 assert(output_stride != 0);
80 this->output_stride_ = output_stride;
81 return *this;
82 }
83
output_stride()84 inline size_t output_stride() const {
85 if (this->output_stride_ == 0) {
86 return m();
87 } else {
88 assert(this->output_stride_ >= m());
89 return this->output_stride_;
90 }
91 }
92
sparsity(float sparsity)93 inline SpMMMicrokernelTester& sparsity(float sparsity) {
94 this->sparsity_ = sparsity;
95 return *this;
96 }
97
sparsity()98 inline float sparsity() const {
99 return this->sparsity_;
100 }
101
qmin(uint8_t qmin)102 inline SpMMMicrokernelTester& qmin(uint8_t qmin) {
103 this->qmin_ = qmin;
104 return *this;
105 }
106
qmin()107 inline uint8_t qmin() const {
108 return this->qmin_;
109 }
110
qmax(uint8_t qmax)111 inline SpMMMicrokernelTester& qmax(uint8_t qmax) {
112 this->qmax_ = qmax;
113 return *this;
114 }
115
qmax()116 inline uint8_t qmax() const {
117 return this->qmax_;
118 }
119
iterations(size_t iterations)120 inline SpMMMicrokernelTester& iterations(size_t iterations) {
121 this->iterations_ = iterations;
122 return *this;
123 }
124
iterations()125 inline size_t iterations() const {
126 return this->iterations_;
127 }
128
Test(xnn_f32_spmm_minmax_ukernel_function spmm,xnn_init_f32_minmax_params_fn init_params)129 void Test(xnn_f32_spmm_minmax_ukernel_function spmm, xnn_init_f32_minmax_params_fn init_params) const {
130 ASSERT_GE(m(), 1);
131 ASSERT_GE(n(), 1);
132 ASSERT_GE(k(), 1);
133
134 std::random_device random_device;
135 auto rng = std::mt19937(random_device());
136 std::uniform_real_distribution<float> f32dist;
137 std::uniform_real_distribution<float> pdist;
138
139 std::vector<float, AlignedAllocator<float, 64>> input(k() * m());
140 // Think of b as (n/nr + n % nr) x k, expansion happens later.
141 const size_t ncols = n() / nr() + n() % nr();
142 std::vector<float> b(ncols * k());
143 std::vector<float> bias(n());
144 // Number of non-zero weights per N (output channel).
145 std::vector<uint32_t> nmap(n());
146 // Mapping from index of non-zero weight to increment of K (input channel) following this index.
147 std::vector<int32_t> dmap(n() * k());
148 std::vector<float> w(n() * k() + n());
149 std::vector<float> output((n() - 1) * output_stride() + m());
150 std::vector<float> output_ref(n() * m());
151
152 for (size_t iteration = 0; iteration < iterations(); iteration++) {
153 std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
154 std::generate(b.begin(), b.end(), [&]() { return f32dist(rng); });
155 std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
156 std::fill(output.begin(), output.end(), nanf(""));
157 std::fill(output_ref.begin(), output_ref.end(), 0.0f);
158 std::fill(nmap.begin(), nmap.end(), 0);
159 std::fill(dmap.begin(), dmap.end(), 0);
160 std::fill(w.begin(), w.end(), 0.0f);
161
162 for (float& b_value : b) {
163 if (pdist(rng) <= sparsity()) {
164 b_value = 0.0f;
165 }
166 }
167
168 uint32_t nnz = 0;
169 uint32_t wcnt = 0;
170 size_t last_kk = 0;
171 bool first_nzz = true;
172 size_t first_kk = 0;
173 for (size_t nn = 0; nn < n() / nr(); nn++) {
174 for (size_t i = 0; i < nr(); ++i)
175 w[wcnt++] = bias[nr() * nn + i];
176 for (size_t kk = 0; kk < k(); kk++) {
177 if (b[nn * k() + kk] != 0.0f) {
178 // Every non-zero actually corresponds to nr adjacent non-zeros.
179 for (size_t i = 0; i < nr(); ++i)
180 w[wcnt++] = b[nn * k() + kk] + static_cast<float>(i);
181 // Skip the very first non-zero weight as we record only the difference.
182 if (first_nzz) {
183 first_kk = kk;
184 } else {
185 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
186 dmap[nnz++] = increment;
187 }
188 last_kk = kk;
189 first_nzz = false;
190 nmap[nn] += 1;
191 }
192 }
193 }
194
195 // now we've constructed the matrix for the blocked part and switch to the
196 // leftovers, which we do as nr=1 always.
197 for (size_t nn = n() / nr(); nn < ncols; nn++) {
198 w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
199 for (size_t kk = 0; kk < k(); kk++) {
200 if (b[nn * k() + kk] != 0.0f) {
201 // Every non-zero actually corresponds to nr adjacent non-zeros.
202 w[wcnt++] = b[nn * k() + kk];
203 // Skip the very first non-zero weight as we record only the difference.
204 if (first_nzz) {
205 first_kk = kk;
206 } else {
207 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
208 dmap[nnz++] = increment;
209 }
210 last_kk = kk;
211 first_nzz = false;
212 nmap[nn] += 1;
213 }
214 }
215 }
216 // In the end, we must return input pointer to the initial value.
217 const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(float));
218 dmap[nnz++] = increment;
219
220 // Generate expanded b which will be used in reference calculation.
221 // Everywhere there is input non-zero in the original we copy it and add an
222 // adjacent non-zero with incremented weight value.
223 std::vector<float> b_full(n() * k());
224 if (nr() == 1) {
225 b_full = b;
226 }
227 else {
228 for (size_t nn = 0; nn < n() / nr(); nn++) {
229 for (size_t kk = 0; kk < k(); kk++) {
230 if (b[nn * k() + kk] != 0.0f) {
231 for (size_t i = 0; i < nr(); ++i)
232 b_full[nr() * nn * k() + i * k() + kk] = b[nn * k() + kk] + static_cast<float>(i);
233 }
234 }
235 }
236 for (size_t nn = n() / nr(); nn < ncols; nn++) {
237 for (size_t kk = 0; kk < k(); kk++) {
238 if (b[nn * k() + kk] != 0.0f) {
239 b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
240 }
241 }
242 }
243 }
244
245 for (size_t oc = 0; oc < n(); oc++) {
246 for (size_t pxb = 0; pxb < m(); pxb++) {
247 output_ref[oc * m() + pxb] = bias[oc];
248 for (size_t ic = 0; ic < k(); ic++) {
249 output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic];
250 }
251 }
252 }
253
254 // Micro-kernel can access one element beyond w and dmap for software pipelining.
255 w.resize(wcnt + 1);
256 dmap.resize(nnz + 1);
257
258 // Compute clamping parameters.
259 const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
260 const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
261 const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
262 const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
263
264 // Clamp reference results.
265 for (float& output_value : output_ref) {
266 output_value = std::min(std::max(output_value, output_min), output_max);
267 }
268
269 // Prepare parameters.
270 xnn_f32_minmax_params params;
271 init_params(¶ms, output_min, output_max);
272
273 spmm(m() * sizeof(float), n(),
274 input.data() + first_kk * m(),
275 w.data(), dmap.data(), nmap.data(),
276 output.data(), output_stride() * sizeof(float),
277 ¶ms);
278
279 // Validate micro-kernel outputs.
280 for (size_t i = 0; i < m(); i++) {
281 for (size_t j = 0; j < n(); j++) {
282 ASSERT_NEAR(
283 output[j * output_stride() + i],
284 output_ref[j * m() + i],
285 std::abs(output_ref[j * m() + i]) * 1.0e-6f)
286 << "at M index " << i << " / " << m() << " (tile " << mr() << ")"
287 << ", N index " << j << " / " << n() << " (tile " << nr() << ")"
288 << ", K = " << k();
289 }
290 }
291 }
292 }
293
Test(xnn_f16_spmm_minmax_ukernel_function spmm,xnn_init_f16_minmax_params_fn init_params)294 void Test(xnn_f16_spmm_minmax_ukernel_function spmm, xnn_init_f16_minmax_params_fn init_params) const {
295 ASSERT_GE(m(), 1);
296 ASSERT_GE(n(), 1);
297 ASSERT_GE(k(), 1);
298
299 std::random_device random_device;
300 auto rng = std::mt19937(random_device());
301 std::uniform_real_distribution<float> f32dist;
302 std::uniform_real_distribution<float> pdist;
303
304 std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> input(k() * m());
305 // Think of b as (n/nr + n % nr) x k, expansion happens later.
306 const size_t ncols = n() / nr() + n() % nr();
307 std::vector<uint16_t> b(ncols * k());
308 std::vector<uint16_t> bias(n());
309 // Number of non-zero weights per N (output channel).
310 std::vector<uint32_t> nmap(n());
311 // Mapping from index of non-zero weight to increment of K (input channel) following this index.
312 std::vector<int32_t> dmap(n() * k());
313 std::vector<uint16_t> w(n() * k() + n());
314 std::vector<uint16_t> output((n() - 1) * output_stride() + m());
315 std::vector<float> output_ref(n() * m());
316
317 for (size_t iteration = 0; iteration < iterations(); iteration++) {
318 std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
319 std::generate(b.begin(), b.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
320 std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
321 std::fill(output.begin(), output.end(), 0xC000);
322 std::fill(output_ref.begin(), output_ref.end(), 0.0f);
323 std::fill(nmap.begin(), nmap.end(), 0);
324 std::fill(dmap.begin(), dmap.end(), 0);
325 std::fill(w.begin(), w.end(), 0);
326
327 for (uint16_t& b_value : b) {
328 if (pdist(rng) <= sparsity()) {
329 b_value = 0;
330 }
331 }
332
333 uint32_t nnz = 0;
334 uint32_t wcnt = 0;
335 size_t last_kk = 0;
336 bool first_nzz = true;
337 size_t first_kk = 0;
338 for (size_t nn = 0; nn < n() / nr(); nn++) {
339 for (size_t i = 0; i < nr(); ++i)
340 w[wcnt++] = bias[nr() * nn + i];
341 for (size_t kk = 0; kk < k(); kk++) {
342 if (!is_fp16_zero(b[nn * k() + kk])) {
343 // Every non-zero actually corresponds to nr adjacent non-zeros.
344 for (size_t i = 0; i < nr(); ++i)
345 w[wcnt++] = fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i));
346 // Skip the very first non-zero weight as we record only the difference.
347 if (first_nzz) {
348 first_kk = kk;
349 } else {
350 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t));
351 dmap[nnz++] = increment;
352 }
353 last_kk = kk;
354 first_nzz = false;
355 nmap[nn] += 1;
356 }
357 }
358 }
359
360 // now we've constructed the matrix for the blocked part and switch to the
361 // leftovers, which we do as nr=1 always.
362 for (size_t nn = n() / nr(); nn < ncols; nn++) {
363 w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
364 for (size_t kk = 0; kk < k(); kk++) {
365 if (!is_fp16_zero(b[nn * k() + kk])) {
366 // Every non-zero actually corresponds to nr adjacent non-zeros.
367 w[wcnt++] = b[nn * k() + kk];
368 // Skip the very first non-zero weight as we record only the difference.
369 if (first_nzz) {
370 first_kk = kk;
371 } else {
372 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t));
373 dmap[nnz++] = increment;
374 }
375 last_kk = kk;
376 first_nzz = false;
377 nmap[nn] += 1;
378 }
379 }
380 }
381 // In the end, we must return input pointer to the initial value.
382 const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(uint16_t));
383 dmap[nnz++] = increment;
384
385 // Generate expanded b which will be used in reference calculation.
386 // Everywhere there is input non-zero in the original we copy it and add an
387 // adjacent non-zero with incremented weight value.
388 std::vector<uint16_t> b_full(n() * k());
389 if (nr() == 1) {
390 b_full = b;
391 }
392 else {
393 for (size_t nn = 0; nn < n() / nr(); nn++) {
394 for (size_t kk = 0; kk < k(); kk++) {
395 if (b[nn * k() + kk] != 0.0f) {
396 for (size_t i = 0; i < nr(); ++i)
397 b_full[nr() * nn * k() + i * k() + kk] = fp16_ieee_from_fp32_value(
398 fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i));
399 }
400 }
401 }
402 for (size_t nn = n() / nr(); nn < ncols; nn++) {
403 for (size_t kk = 0; kk < k(); kk++) {
404 if (b[nn * k() + kk] != 0.0f) {
405 b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
406 }
407 }
408 }
409 }
410
411 for (size_t oc = 0; oc < n(); oc++) {
412 for (size_t pxb = 0; pxb < m(); pxb++) {
413 output_ref[oc * m() + pxb] = fp16_ieee_to_fp32_value(bias[oc]);
414 for (size_t ic = 0; ic < k(); ic++) {
415 output_ref[oc * m() + pxb] += fp16_ieee_to_fp32_value(input[ic * m() + pxb]) * fp16_ieee_to_fp32_value(b_full[oc * k() + ic]);
416 }
417 }
418 }
419
420 // Micro-kernel can access one element beyond w and dmap for software pipelining.
421 w.resize(wcnt + 1);
422 dmap.resize(nnz + 1);
423
424 // Compute clamping parameters.
425 const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
426 const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
427 const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
428 const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
429
430 // Clamp reference results.
431 for (float& output_value : output_ref) {
432 output_value = std::min(std::max(output_value, output_min), output_max);
433 }
434
435 // Prepare parameters.
436 xnn_f16_minmax_params params;
437 init_params(¶ms,
438 fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max));
439
440 spmm(m() * sizeof(uint16_t), n(),
441 input.data() + first_kk * m(),
442 w.data(), dmap.data(), nmap.data(),
443 output.data(), output_stride() * sizeof(uint16_t),
444 ¶ms);
445
446 // Validate micro-kernel outputs.
447 for (size_t i = 0; i < m(); i++) {
448 for (size_t j = 0; j < n(); j++) {
449 ASSERT_NEAR(
450 fp16_ieee_to_fp32_value(output[j * output_stride() + i]),
451 output_ref[j * m() + i],
452 std::max(1.0e-4f, std::abs(output_ref[j * m() + i]) * 1.0e-2f))
453 << "at M index " << i << " / " << m() << " (tile " << mr() << ")"
454 << ", N index " << j << " / " << n() << " (tile " << nr() << ")"
455 << ", K = " << k();
456 }
457 }
458 }
459 }
460
461 private:
462 size_t mr_{1};
463 size_t nr_{1};
464 size_t m_{1};
465 size_t n_{1};
466 size_t k_{1};
467 size_t output_stride_{0};
468 float sparsity_{0.5f};
469 uint8_t qmin_{0};
470 uint8_t qmax_{255};
471 size_t iterations_{1};
472 };
473