xref: /aosp_15_r20/external/XNNPACK/test/prelu.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <array>
8 #include <cstddef>
9 #include <cstdint>
10 #include <limits>
11 #include <memory>
12 #include <numeric>
13 #include <random>
14 
15 #include <xnnpack.h>
16 #include <xnnpack/node-type.h>
17 #include <xnnpack/operator.h>
18 #include <xnnpack/subgraph.h>
19 
20 #include <gtest/gtest.h>
21 
22 class PreluTestF32 : public ::testing::Test {
23 protected:
SetUp()24   void SetUp() override
25   {
26     random_device = std::unique_ptr<std::random_device>(new std::random_device());
27     rng = std::mt19937((*random_device)());
28     dim_dist = std::uniform_int_distribution<size_t>(1, 9);
29     input_dims = RandomShape(4);
30     output_dims = input_dims;
31     batch_size = input_dims[0] * input_dims[1] * input_dims[2];
32     channels = input_dims[3];
33     slope_dims = {channels};
34     input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + NumElements(input_dims));
35     slope = std::vector<float>(channels);
36     operator_output = std::vector<float>(NumElements(output_dims));
37     subgraph_output = std::vector<float>(operator_output.size());
38   }
39 
RandomShape(size_t num_dims)40   std::vector<size_t> RandomShape(size_t num_dims)
41   {
42     std::vector<size_t> dims(num_dims);
43     std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
44     return dims;
45   }
46 
NumElements(std::vector<size_t> & dims)47   size_t NumElements(std::vector<size_t>& dims)
48   {
49     return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
50   }
51 
52   std::unique_ptr<std::random_device> random_device;
53   std::mt19937 rng;
54   std::uniform_int_distribution<size_t> dim_dist;
55 
56   std::vector<size_t> output_dims;
57   std::vector<size_t> input_dims;
58   std::vector<size_t> slope_dims;
59   std::vector<float> input;
60   std::vector<float> slope;
61   std::vector<float> operator_output;
62   std::vector<float> subgraph_output;
63   size_t channels;
64   size_t batch_size;
65 };
66 
TEST_F(PreluTestF32,define)67 TEST_F(PreluTestF32, define)
68 {
69   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
70 
71   xnn_subgraph_t subgraph = nullptr;
72   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
73   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
74 
75   uint32_t input_id = XNN_INVALID_NODE_ID;
76   ASSERT_EQ(
77     xnn_status_success, xnn_define_tensor_value(
78                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0,
79                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
80   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
81 
82   uint32_t slope_id = XNN_INVALID_NODE_ID;
83   ASSERT_EQ(
84     xnn_status_success, xnn_define_tensor_value(
85                           subgraph, xnn_datatype_fp32, slope_dims.size(), slope_dims.data(), slope.data(), 1,
86                           /*flags=*/0, &slope_id));
87   ASSERT_NE(slope_id, XNN_INVALID_NODE_ID);
88 
89   uint32_t output_id = XNN_INVALID_NODE_ID;
90   ASSERT_EQ(
91     xnn_status_success, xnn_define_tensor_value(
92                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 2,
93                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
94   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
95 
96   ASSERT_EQ(xnn_status_success, xnn_define_prelu(subgraph, input_id, slope_id, output_id, /*flags=*/0));
97 
98   ASSERT_EQ(subgraph->num_nodes, 1);
99   const struct xnn_node* node = &subgraph->nodes[0];
100   ASSERT_EQ(node->type, xnn_node_type_prelu);
101   ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
102   ASSERT_EQ(node->num_inputs, 2);
103   ASSERT_EQ(node->inputs[0], input_id);
104   ASSERT_EQ(node->inputs[1], slope_id);
105   ASSERT_EQ(node->num_outputs, 1);
106   ASSERT_EQ(node->outputs[0], output_id);
107   ASSERT_EQ(node->flags, 0);
108 }
109 
TEST_F(PreluTestF32,matches_operator_api)110 TEST_F(PreluTestF32, matches_operator_api)
111 {
112   std::uniform_real_distribution<float> f32idist(-1.0f, 1.0f);
113   std::uniform_real_distribution<float> f32wdist(0.25f, 0.75f);
114   std::generate(input.begin(), input.end(), [&]() { return f32idist(rng); });
115   std::generate(slope.begin(), slope.end(), [&]() { return f32wdist(rng); });
116   std::fill(operator_output.begin(), operator_output.end(), nanf(""));
117   std::fill(subgraph_output.begin(), subgraph_output.end(), nanf(""));
118 
119   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
120 
121   // Call operator API.
122   xnn_operator_t op = nullptr;
123   const xnn_status status =
124     xnn_create_prelu_nc_f32(channels, channels, channels, slope.data(), /*flags=*/0, nullptr, &op);
125   if (status == xnn_status_unsupported_hardware) {
126     GTEST_SKIP();
127   }
128 
129   ASSERT_EQ(xnn_status_success, status);
130   ASSERT_NE(nullptr, op);
131   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
132 
133   ASSERT_EQ(
134     xnn_status_success,
135     xnn_setup_prelu_nc_f32(op, batch_size, input.data(), operator_output.data(), /*threadpool=*/nullptr));
136 
137   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
138 
139   // Call subgraph API.
140   xnn_subgraph_t subgraph = nullptr;
141   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
142   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
143   uint32_t input_id = XNN_INVALID_NODE_ID;
144   ASSERT_EQ(
145     xnn_status_success, xnn_define_tensor_value(
146                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0,
147                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
148   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
149 
150   uint32_t slope_id = XNN_INVALID_NODE_ID;
151   ASSERT_EQ(
152     xnn_status_success,
153     xnn_define_tensor_value(
154       subgraph, xnn_datatype_fp32, slope_dims.size(), slope_dims.data(), slope.data(), /*external_id=*/1,
155       /*flags=*/0, &slope_id));
156   ASSERT_NE(slope_id, XNN_INVALID_NODE_ID);
157 
158   uint32_t output_id = XNN_INVALID_NODE_ID;
159   ASSERT_EQ(
160     xnn_status_success,
161     xnn_define_tensor_value(
162       subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2,
163       /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
164   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
165 
166   xnn_runtime_t runtime = nullptr;
167   ASSERT_EQ(xnn_status_success, xnn_define_prelu(subgraph, input_id, slope_id, output_id, /*flags=*/0));
168   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
169   ASSERT_NE(nullptr, runtime);
170   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
171   std::array<xnn_external_value, 2> external = {
172     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
173   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
174   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
175 
176   ASSERT_EQ(subgraph_output, operator_output);
177 }
178