xref: /aosp_15_r20/external/XNNPACK/test/maxpool-microkernel-tester.h (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2019 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8 
9 #pragma once
10 
11 #include <gtest/gtest.h>
12 
13 #include <algorithm>
14 #include <cassert>
15 #include <cstddef>
16 #include <cstdlib>
17 #include <limits>
18 #include <random>
19 #include <vector>
20 
21 #include <fp16.h>
22 
23 #include <xnnpack.h>
24 #include <xnnpack/microparams-init.h>
25 #include <xnnpack/microfnptr.h>
26 
27 
28 class MaxPoolMicrokernelTester {
29  public:
output_pixels(size_t output_pixels)30   inline MaxPoolMicrokernelTester& output_pixels(size_t output_pixels) {
31     assert(output_pixels != 0);
32     this->output_pixels_ = output_pixels;
33     return *this;
34   }
35 
output_pixels()36   inline size_t output_pixels() const {
37     return this->output_pixels_;
38   }
39 
step(size_t step)40   inline MaxPoolMicrokernelTester& step(size_t step) {
41     assert(step != 0);
42     this->step_ = step;
43     return *this;
44   }
45 
step()46   inline size_t step() const {
47     return this->step_;
48   }
49 
input_offset(size_t input_offset)50   inline MaxPoolMicrokernelTester& input_offset(size_t input_offset) {
51     assert(input_offset != 0);
52     this->input_offset_ = input_offset;
53     return *this;
54   }
55 
input_offset()56   inline size_t input_offset() const {
57     return this->input_offset_;
58   }
59 
pooling_elements(size_t pooling_elements)60   inline MaxPoolMicrokernelTester& pooling_elements(size_t pooling_elements) {
61     assert(pooling_elements != 0);
62     this->pooling_elements_ = pooling_elements;
63     return *this;
64   }
65 
pooling_elements()66   inline size_t pooling_elements() const {
67     return this->pooling_elements_;
68   }
69 
packed_pooling_elements()70   inline size_t packed_pooling_elements() const {
71     if (pooling_elements() <= primary_pooling_tile()) {
72       return primary_pooling_tile();
73     } else {
74       return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile();
75     }
76   }
77 
pooling_tile(size_t primary_tile,size_t incremental_tile)78   inline MaxPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile) {
79     assert(primary_tile != 0);
80     this->primary_pooling_tile_ = primary_tile;
81     this->incremental_pooling_tile_ = incremental_tile;
82     return *this;
83   }
84 
primary_pooling_tile(size_t primary_pooling_tile)85   inline MaxPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) {
86     assert(primary_pooling_tile != 0);
87     this->primary_pooling_tile_ = primary_pooling_tile;
88     return *this;
89   }
90 
primary_pooling_tile()91   inline size_t primary_pooling_tile() const {
92     return this->primary_pooling_tile_;
93   }
94 
incremental_pooling_tile(size_t incremental_pooling_tile)95   inline MaxPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) {
96     assert(incremental_pooling_tile != 0);
97     this->incremental_pooling_tile_ = incremental_pooling_tile;
98     return *this;
99   }
100 
incremental_pooling_tile()101   inline size_t incremental_pooling_tile() const {
102     return this->incremental_pooling_tile_;
103   }
104 
channels(size_t channels)105   inline MaxPoolMicrokernelTester& channels(size_t channels) {
106     assert(channels != 0);
107     this->channels_ = channels;
108     return *this;
109   }
110 
channels()111   inline size_t channels() const {
112     return this->channels_;
113   }
114 
output_stride(size_t output_stride)115   inline MaxPoolMicrokernelTester& output_stride(size_t output_stride) {
116     assert(output_stride != 0);
117     this->output_stride_ = output_stride;
118     return *this;
119   }
120 
output_stride()121   inline size_t output_stride() const {
122     if (this->output_stride_ == 0) {
123       return channels();
124     } else {
125       assert(this->output_stride_ >= channels());
126       return this->output_stride_;
127     }
128   }
129 
qmin(int16_t qmin)130   inline MaxPoolMicrokernelTester& qmin(int16_t qmin) {
131     this->qmin_ = qmin;
132     return *this;
133   }
134 
qmin()135   inline int16_t qmin() const {
136     return this->qmin_;
137   }
138 
qmax(int16_t qmax)139   inline MaxPoolMicrokernelTester& qmax(int16_t qmax) {
140     this->qmax_ = qmax;
141     return *this;
142   }
143 
qmax()144   inline int16_t qmax() const {
145     return this->qmax_;
146   }
147 
iterations(size_t iterations)148   inline MaxPoolMicrokernelTester& iterations(size_t iterations) {
149     this->iterations_ = iterations;
150     return *this;
151   }
152 
iterations()153   inline size_t iterations() const {
154     return this->iterations_;
155   }
156 
Test(xnn_s8_maxpool_ukernel_function maxpool,xnn_init_s8_minmax_params_fn init_params)157   void Test(xnn_s8_maxpool_ukernel_function maxpool, xnn_init_s8_minmax_params_fn init_params) const {
158     ASSERT_GE(qmin(), std::numeric_limits<int8_t>::min());
159     ASSERT_LE(qmax(), std::numeric_limits<int8_t>::max());
160     ASSERT_LT(qmin(), qmax());
161 
162     std::random_device random_device;
163     auto rng = std::mt19937(random_device());
164     std::uniform_int_distribution<int32_t> i8dist(
165       std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
166 
167     std::vector<const int8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
168     std::vector<int8_t> input(XNN_EXTRA_BYTES / sizeof(int8_t) +
169       indirect_input.size() * channels());
170     std::vector<int8_t> output(XNN_EXTRA_BYTES / sizeof(int8_t) +
171       (output_pixels() - 1) * output_stride() + channels());
172     std::vector<int8_t> output_ref(output_pixels() * channels());
173     for (size_t iteration = 0; iteration < iterations(); iteration++) {
174       do {
175         std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
176       } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
177       std::fill(output.begin(), output.end(), INT8_C(0xA5));
178 
179       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
180         indirect_input[i] = input.data() + i * channels() - input_offset();
181       }
182       std::shuffle(indirect_input.begin(),
183         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
184 
185       // Prepare parameters.
186       xnn_s8_minmax_params params;
187       init_params(&params, static_cast<int8_t>(qmin()), static_cast<int8_t>(qmax()));
188 
189       // Compute reference results.
190       for (size_t x = 0; x < output_pixels(); x++) {
191         for (size_t c = 0; c < channels(); c++) {
192           int8_t max_value = std::numeric_limits<int8_t>::min();
193           for (size_t p = 0; p < pooling_elements(); p++) {
194             max_value = std::max(max_value, indirect_input[x * step() + p][c + input_offset()]);
195           }
196           max_value = std::min(max_value, static_cast<int8_t>(qmax()));
197           max_value = std::max(max_value, static_cast<int8_t>(qmin()));
198           output_ref[x * channels() + c] = max_value;
199         }
200       }
201 
202       // Call optimized micro-kernel.
203       maxpool(output_pixels(), pooling_elements(), channels(),
204         indirect_input.data(), input_offset() * sizeof(int8_t), output.data(),
205         (step() - packed_pooling_elements()) * sizeof(void*),
206         (output_stride() - channels()) * sizeof(int8_t),
207         &params);
208 
209       // Verify results.
210       for (size_t x = 0; x < output_pixels(); x++) {
211         for (size_t c = 0; c < channels(); c++) {
212           ASSERT_GE(int16_t(output[x * output_stride() + c]), qmin())
213             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
214             << ", pooling elements = " << pooling_elements() << ", step = " << step()
215             << ", input offset = " << input_offset();
216           ASSERT_LE(int16_t(output[x * output_stride() + c]), qmax())
217             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
218             << ", pooling elements = " << pooling_elements() << ", step = " << step()
219             << ", input offset = " << input_offset();
220           ASSERT_EQ(int32_t(output_ref[x * channels() + c]), int32_t(output[x * output_stride() + c]))
221             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
222             << ", pooling elements = " << pooling_elements() << ", step = " << step()
223             << ", input offset = " << input_offset();
224         }
225       }
226     }
227   }
228 
Test(xnn_u8_maxpool_ukernel_function maxpool,xnn_init_u8_minmax_params_fn init_params)229   void Test(xnn_u8_maxpool_ukernel_function maxpool, xnn_init_u8_minmax_params_fn init_params) const {
230     ASSERT_GE(qmin(), std::numeric_limits<uint8_t>::min());
231     ASSERT_LE(qmax(), std::numeric_limits<uint8_t>::max());
232     ASSERT_LT(qmin(), qmax());
233 
234     std::random_device random_device;
235     auto rng = std::mt19937(random_device());
236     std::uniform_int_distribution<int32_t> u8dist(
237       std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
238 
239     std::vector<const uint8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
240     std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
241       indirect_input.size() * channels());
242     std::vector<uint8_t> output(XNN_EXTRA_BYTES / sizeof(uint8_t) +
243       (output_pixels() - 1) * output_stride() + channels());
244     std::vector<uint8_t> output_ref(output_pixels() * channels());
245     for (size_t iteration = 0; iteration < iterations(); iteration++) {
246       do {
247         std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
248       } while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
249       std::fill(output.begin(), output.end(), UINT8_C(0xA5));
250 
251       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
252         indirect_input[i] = input.data() + i * channels() - input_offset();
253       }
254       std::shuffle(indirect_input.begin(),
255         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
256 
257       // Prepare parameters.
258       xnn_u8_minmax_params params;
259       init_params(&params, static_cast<uint8_t>(qmin()), static_cast<uint8_t>(qmax()));
260 
261       // Compute reference results.
262       for (size_t x = 0; x < output_pixels(); x++) {
263         for (size_t c = 0; c < channels(); c++) {
264           uint8_t max_value = 0;
265           for (size_t p = 0; p < pooling_elements(); p++) {
266             max_value = std::max(max_value, indirect_input[x * step() + p][c + input_offset()]);
267           }
268           max_value = std::min(max_value, static_cast<uint8_t>(qmax()));
269           max_value = std::max(max_value, static_cast<uint8_t>(qmin()));
270           output_ref[x * channels() + c] = max_value;
271         }
272       }
273 
274       // Call optimized micro-kernel.
275       maxpool(output_pixels(), pooling_elements(), channels(),
276         indirect_input.data(), input_offset() * sizeof(uint8_t), output.data(),
277         (step() - packed_pooling_elements()) * sizeof(void*),
278         (output_stride() - channels()) * sizeof(uint8_t),
279         &params);
280 
281       // Verify results.
282       for (size_t x = 0; x < output_pixels(); x++) {
283         for (size_t c = 0; c < channels(); c++) {
284           ASSERT_GE(int16_t(output[x * output_stride() + c]), qmin())
285             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
286             << ", pooling elements = " << pooling_elements() << ", step = " << step()
287             << ", input offset = " << input_offset();
288           ASSERT_LE(int16_t(output[x * output_stride() + c]), qmax())
289             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
290             << ", pooling elements = " << pooling_elements() << ", step = " << step()
291             << ", input offset = " << input_offset();
292           ASSERT_EQ(int32_t(output_ref[x * channels() + c]), int32_t(output[x * output_stride() + c]))
293             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
294             << ", pooling elements = " << pooling_elements() << ", step = " << step()
295             << ", input offset = " << input_offset();
296         }
297       }
298     }
299   }
300 
Test(xnn_f16_maxpool_ukernel_function maxpool,xnn_init_f16_minmax_params_fn init_params)301   void Test(xnn_f16_maxpool_ukernel_function maxpool, xnn_init_f16_minmax_params_fn init_params) const {
302     ASSERT_LT(qmin(), qmax());
303 
304     std::random_device random_device;
305     auto rng = std::mt19937(random_device());
306     std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
307 
308     std::vector<const uint16_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
309     std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) +
310       ((output_pixels() - 1) * step() + pooling_elements()) * channels());
311     std::vector<uint16_t> output(XNN_EXTRA_BYTES / sizeof(uint16_t) +
312       (output_pixels() - 1) * output_stride() + channels());
313     std::vector<float> output_ref(output_pixels() * channels());
314     for (size_t iteration = 0; iteration < iterations(); iteration++) {
315       std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); });
316       std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
317 
318       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
319         indirect_input[i] = input.data() + i * channels() - input_offset();
320       }
321       std::shuffle(indirect_input.begin(),
322         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
323 
324       // Compute reference results, without clamping.
325       for (size_t x = 0; x < output_pixels(); x++) {
326         for (size_t c = 0; c < channels(); c++) {
327           float max_value = -std::numeric_limits<float>::infinity();
328           for (size_t p = 0; p < pooling_elements(); p++) {
329             max_value = std::max(max_value, fp16_ieee_to_fp32_value(indirect_input[x * step() + p][c + input_offset()]));
330           }
331           output_ref[x * channels() + c] = max_value;
332         }
333       }
334 
335       // Compute clamping parameters.
336       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
337       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
338       const float accumulated_range = accumulated_max - accumulated_min;
339       float output_min = accumulated_min + accumulated_range *
340         (static_cast<float>(qmin() - std::numeric_limits<int16_t>::min()) /
341           static_cast<float>(std::numeric_limits<int16_t>::max() - std::numeric_limits<int16_t>::min()));
342       if (qmin() == std::numeric_limits<int16_t>::min()) {
343         output_min = -std::numeric_limits<float>::infinity();
344       }
345       float output_max = accumulated_max - accumulated_range *
346         (static_cast<float>(std::numeric_limits<int16_t>::max() - qmax()) /
347           static_cast<float>(std::numeric_limits<int16_t>::max() - std::numeric_limits<int16_t>::min()));
348       if (qmax() == std::numeric_limits<int16_t>::max()) {
349         output_max = +std::numeric_limits<float>::infinity();
350       }
351       output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min));
352       output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max));
353 
354       // Prepare parameters.
355       xnn_f16_minmax_params params;
356       init_params(&params, fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max));
357 
358       // Clamp reference results.
359       for (float& output_value : output_ref) {
360         output_value = std::max(std::min(output_value, output_max), output_min);
361       }
362 
363       // Call optimized micro-kernel.
364       maxpool(output_pixels(), pooling_elements(), channels(),
365         reinterpret_cast<const void**>(indirect_input.data()), input_offset() * sizeof(uint16_t), output.data(),
366         (step() - packed_pooling_elements()) * sizeof(void*),
367         (output_stride() - channels()) * sizeof(uint16_t),
368         &params);
369 
370       // Verify results.
371       for (size_t x = 0; x < output_pixels(); x++) {
372         for (size_t c = 0; c < channels(); c++) {
373           ASSERT_GE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_min)
374             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
375             << ", pooling elements = " << pooling_elements() << ", step = " << step()
376             << ", input offset = " << input_offset();
377           ASSERT_LE(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_max)
378             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
379             << ", pooling elements = " << pooling_elements() << ", step = " << step()
380             << ", input offset = " << input_offset();
381           ASSERT_EQ(fp16_ieee_to_fp32_value(output[x * output_stride() + c]), output_ref[x * channels() + c])
382             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
383             << ", pooling elements = " << pooling_elements() << ", step = " << step()
384             << ", input offset = " << input_offset();
385         }
386       }
387     }
388   }
389 
Test(xnn_f32_maxpool_ukernel_function maxpool,xnn_init_f32_minmax_params_fn init_params)390   void Test(xnn_f32_maxpool_ukernel_function maxpool, xnn_init_f32_minmax_params_fn init_params) const {
391     ASSERT_LT(qmin(), qmax());
392 
393     std::random_device random_device;
394     auto rng = std::mt19937(random_device());
395     std::uniform_real_distribution<float> f32dist(-1.0f, 1.0f);
396 
397     std::vector<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
398     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
399       ((output_pixels() - 1) * step() + pooling_elements()) * channels());
400     std::vector<float> output(XNN_EXTRA_BYTES / sizeof(float) +
401       (output_pixels() - 1) * output_stride() + channels());
402     std::vector<float> output_ref(output_pixels() * channels());
403     for (size_t iteration = 0; iteration < iterations(); iteration++) {
404       std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
405       std::fill(output.begin(), output.end(), nanf(""));
406 
407       for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
408         indirect_input[i] = input.data() + i * channels() - input_offset();
409       }
410       std::shuffle(indirect_input.begin(),
411         indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
412 
413       // Compute reference results, without clamping.
414       for (size_t x = 0; x < output_pixels(); x++) {
415         for (size_t c = 0; c < channels(); c++) {
416           float max_value = -std::numeric_limits<float>::infinity();
417           for (size_t p = 0; p < pooling_elements(); p++) {
418             max_value = std::max(max_value, indirect_input[x * step() + p][c + input_offset()]);
419           }
420           output_ref[x * channels() + c] = max_value;
421         }
422       }
423 
424       // Compute clamping parameters.
425       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
426       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
427       const float accumulated_range = accumulated_max - accumulated_min;
428       float output_min = accumulated_min + accumulated_range *
429         (static_cast<float>(qmin() - std::numeric_limits<int16_t>::min()) /
430           static_cast<float>(std::numeric_limits<int16_t>::max() - std::numeric_limits<int16_t>::min()));
431       if (qmin() == std::numeric_limits<int16_t>::min()) {
432         output_min = -std::numeric_limits<float>::infinity();
433       }
434       float output_max = accumulated_max - accumulated_range *
435         (static_cast<float>(std::numeric_limits<int16_t>::max() - qmax()) /
436           static_cast<float>(std::numeric_limits<int16_t>::max() - std::numeric_limits<int16_t>::min()));
437       if (qmax() == std::numeric_limits<int16_t>::max()) {
438         output_max = +std::numeric_limits<float>::infinity();
439       }
440 
441       // Prepare parameters.
442       xnn_f32_minmax_params params;
443       init_params(&params, output_min, output_max);
444 
445       // Clamp reference results.
446       for (float& output_value : output_ref) {
447         output_value = std::max(std::min(output_value, output_max), output_min);
448       }
449 
450       // Call optimized micro-kernel.
451       maxpool(output_pixels(), pooling_elements(), channels(),
452         indirect_input.data(), input_offset() * sizeof(float), output.data(),
453         (step() - packed_pooling_elements()) * sizeof(void*),
454         (output_stride() - channels()) * sizeof(float),
455         &params);
456 
457       // Verify results.
458       for (size_t x = 0; x < output_pixels(); x++) {
459         for (size_t c = 0; c < channels(); c++) {
460           ASSERT_GE(output[x * output_stride() + c], output_min)
461             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
462             << ", pooling elements = " << pooling_elements() << ", step = " << step()
463             << ", input offset = " << input_offset();
464           ASSERT_LE(output[x * output_stride() + c], output_max)
465             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
466             << ", pooling elements = " << pooling_elements() << ", step = " << step()
467             << ", input offset = " << input_offset();
468           ASSERT_EQ(output_ref[x * channels() + c], output[x * output_stride() + c])
469             << "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
470             << ", pooling elements = " << pooling_elements() << ", step = " << step()
471             << ", input offset = " << input_offset();
472         }
473       }
474     }
475   }
476 
477  private:
478   size_t output_pixels_{1};
479   size_t pooling_elements_{1};
480   size_t channels_{1};
481   size_t input_offset_{0};
482   size_t step_{1};
483   size_t primary_pooling_tile_{1};
484   size_t incremental_pooling_tile_{1};
485   size_t output_stride_{0};
486   int16_t qmin_{std::numeric_limits<int16_t>::min()};
487   int16_t qmax_{std::numeric_limits<int16_t>::max()};
488   size_t iterations_{3};
489 };
490