xref: /aosp_15_r20/external/XNNPACK/test/fully-connected.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>  // For std::generate, std::min.
7 #include <array>      // For std::array.
8 #include <cmath>      // For std::lrintf.
9 #include <cstddef>    // For size_t.
10 #include <cstdint>    // For uint32_t.
11 #include <limits>     // For std::numeric_limits.
12 #include <memory>     // For std::unique_ptr.
13 #include <numeric>    // For std::accumulate.
14 #include <random>     // For std::random_device, std::mt19937, std::uniform_real_distribution.
15 #include <vector>     // For std::vector.
16 
17 #include <xnnpack.h>
18 #include <xnnpack/operator.h>
19 #include <xnnpack/requantization.h>
20 #include <xnnpack/subgraph.h>
21 
22 #include <gtest/gtest.h>
23 
24 template <class T, class BiasType = T> class FullyConnectedTestBase : public ::testing::Test {
25 protected:
FullyConnectedTestBase()26   FullyConnectedTestBase()
27   {
28     random_device = std::unique_ptr<std::random_device>(new std::random_device());
29     rng = std::mt19937((*random_device)());
30     input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15);
31     kernel_size_dist = std::uniform_int_distribution<uint32_t>(1, 5);
32     stride_dist = std::uniform_int_distribution<uint32_t>(1, 2);
33     f32dist = std::uniform_real_distribution<float>(0.1f, 1.0f);
34     scale_dist = std::uniform_real_distribution<float>(1.0f, 5.0f);
35     i32dist = std::uniform_int_distribution<int32_t>(-10000, 10000);
36     auto shape_dist = std::uniform_int_distribution<size_t>(2, XNN_MAX_TENSOR_DIMS);
37     dim_dist = std::uniform_int_distribution<size_t>(5, 15);
38     i8dist =
39       std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
40     w8dist =
41       std::uniform_int_distribution<int32_t>(-std::numeric_limits<uint8_t>::max(), std::numeric_limits<uint8_t>::max());
42 
43     output_min = -std::numeric_limits<float>::infinity();
44     output_max = std::numeric_limits<float>::infinity();
45 
46     size_t num_input_dims = shape_dist(rng);
47     input_dims = RandomShape(num_input_dims);
48     assert(input_dims.size() >= 2);
49     output_channels = dim_dist(rng);
50     input_channels = input_dims.back();
51     kernel_dims = {output_channels, input_channels};
52     output_dims = input_dims;
53     output_dims[output_dims.size() - 1] = output_channels;
54 
55     batch_size = NumElements(input_dims) / input_channels;
56 
57     input = std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input_dims));
58     kernel = std::vector<T>(input_channels * output_channels);
59     bias = std::vector<BiasType>(output_channels);
60     operator_output = std::vector<T>(NumElements(output_dims));
61     subgraph_output = std::vector<T>(operator_output.size());
62     accumulators = std::vector<int32_t>(batch_size * output_channels);
63   }
64 
RandomShape(size_t num_dims)65   std::vector<size_t> RandomShape(size_t num_dims)
66   {
67     std::vector<size_t> dims(num_dims);
68     std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
69     return dims;
70   }
71 
NumElements(std::vector<size_t> & dims)72   size_t NumElements(std::vector<size_t>& dims)
73   {
74     return std::accumulate(dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
75   }
76 
77   std::unique_ptr<std::random_device> random_device;
78   std::mt19937 rng;
79   std::uniform_int_distribution<uint32_t> input_size_dist;
80   std::uniform_int_distribution<uint32_t> kernel_size_dist;
81   std::uniform_int_distribution<uint32_t> stride_dist;
82   std::uniform_int_distribution<int32_t> i32dist;
83   std::uniform_real_distribution<float> f32dist;
84   std::uniform_real_distribution<float> scale_dist;
85   std::uniform_int_distribution<size_t> dim_dist;
86   std::uniform_int_distribution<int32_t> i8dist;
87   std::uniform_int_distribution<int32_t> u8dist;
88   std::uniform_int_distribution<int32_t> w8dist;
89 
90   uint32_t batch_size;
91   size_t input_channels;
92   size_t output_channels;
93 
94   float output_min;
95   float output_max;
96 
97   std::vector<size_t> input_dims;
98   std::vector<size_t> kernel_dims;
99   std::vector<size_t> bias_dims;
100   std::vector<size_t> output_dims;
101 
102   std::vector<T> input;
103   std::vector<T> kernel;
104   std::vector<BiasType> bias;
105   std::vector<T> operator_output;
106   std::vector<T> subgraph_output;
107   std::vector<int32_t> accumulators;
108 };
109 
110 template <class T> class QuantizedFullyConnectedTestBase : public FullyConnectedTestBase<T, int32_t> {
111 protected:
initialize_accumulators_from_bias()112   void initialize_accumulators_from_bias()
113   {
114     for (size_t i = 0; i < this->batch_size; i++) {
115       for (size_t oc = 0; oc < this->output_channels; oc++) {
116         this->accumulators[i * this->output_channels + oc] = this->bias[oc];
117       }
118     }
119   }
120 };
121 
122 using FullyConnectedTestQS8 = QuantizedFullyConnectedTestBase<int8_t>;
123 using FullyConnectedTestQU8 = QuantizedFullyConnectedTestBase<uint8_t>;
124 using FullyConnectedTestF32 = FullyConnectedTestBase<float>;
125 
TEST_F(FullyConnectedTestQS8,define)126 TEST_F(FullyConnectedTestQS8, define)
127 {
128   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
129 
130   xnn_subgraph_t subgraph = nullptr;
131   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
132   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
133 
134   uint32_t input_id = XNN_INVALID_NODE_ID;
135   ASSERT_EQ(
136     xnn_status_success, xnn_define_quantized_tensor_value(
137                           subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr,
138                           /*external_id=*/0, /*flags=*/0, &input_id));
139   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
140 
141   uint32_t kernel_id = XNN_INVALID_NODE_ID;
142   ASSERT_EQ(
143     xnn_status_success, xnn_define_quantized_tensor_value(
144                           subgraph, xnn_datatype_qint8, 0, 1.0f, kernel_dims.size(), kernel_dims.data(), kernel.data(),
145                           /*external_id=*/1, /*flags=*/0, &kernel_id));
146 
147   uint32_t bias_id = XNN_INVALID_NODE_ID;
148   ASSERT_EQ(
149     xnn_status_success, xnn_define_quantized_tensor_value(
150                           subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(),
151                           /*external_id=*/2, /*flags=*/0, &bias_id));
152 
153   uint32_t output_id = XNN_INVALID_NODE_ID;
154   ASSERT_EQ(
155     xnn_status_success, xnn_define_quantized_tensor_value(
156                           subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr,
157                           /*external_id=*/3, /*flags=*/0, &output_id));
158   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
159 
160   ASSERT_EQ(
161     xnn_status_success,
162     xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0));
163 
164   ASSERT_EQ(subgraph->num_nodes, 1);
165   const struct xnn_node* node = &subgraph->nodes[0];
166   ASSERT_EQ(node->type, xnn_node_type_fully_connected);
167   ASSERT_EQ(node->compute_type, xnn_compute_type_qs8);
168   ASSERT_EQ(node->activation.output_min, output_min);
169   ASSERT_EQ(node->activation.output_max, output_max);
170   ASSERT_EQ(node->num_inputs, 3);
171   ASSERT_EQ(node->inputs[0], input_id);
172   ASSERT_EQ(node->inputs[1], kernel_id);
173   ASSERT_EQ(node->inputs[2], bias_id);
174   ASSERT_EQ(node->num_outputs, 1);
175   ASSERT_EQ(node->outputs[0], output_id);
176   ASSERT_EQ(node->flags, 0);
177 }
178 
TEST_F(FullyConnectedTestQU8,define)179 TEST_F(FullyConnectedTestQU8, define)
180 {
181   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
182 
183   xnn_subgraph_t subgraph = nullptr;
184   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
185   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
186 
187   uint32_t input_id = XNN_INVALID_NODE_ID;
188   ASSERT_EQ(
189     xnn_status_success, xnn_define_quantized_tensor_value(
190                           subgraph, xnn_datatype_quint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr,
191                           /*external_id=*/0, /*flags=*/0, &input_id));
192   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
193 
194   uint32_t kernel_id = XNN_INVALID_NODE_ID;
195   ASSERT_EQ(
196     xnn_status_success, xnn_define_quantized_tensor_value(
197                           subgraph, xnn_datatype_quint8, 0, 1.0f, kernel_dims.size(), kernel_dims.data(), kernel.data(),
198                           /*external_id=*/1, /*flags=*/0, &kernel_id));
199 
200   uint32_t bias_id = XNN_INVALID_NODE_ID;
201   ASSERT_EQ(
202     xnn_status_success, xnn_define_quantized_tensor_value(
203                           subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(),
204                           /*external_id=*/2, /*flags=*/0, &bias_id));
205 
206   uint32_t output_id = XNN_INVALID_NODE_ID;
207   ASSERT_EQ(
208     xnn_status_success, xnn_define_quantized_tensor_value(
209                           subgraph, xnn_datatype_quint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr,
210                           /*external_id=*/3, /*flags=*/0, &output_id));
211   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
212 
213   ASSERT_EQ(
214     xnn_status_success, xnn_define_fully_connected(
215                           subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id,
216                           /*flags=*/0));
217 
218   ASSERT_EQ(subgraph->num_nodes, 1);
219   const struct xnn_node* node = &subgraph->nodes[0];
220   ASSERT_EQ(node->type, xnn_node_type_fully_connected);
221   ASSERT_EQ(node->compute_type, xnn_compute_type_qu8);
222   ASSERT_EQ(node->activation.output_min, output_min);
223   ASSERT_EQ(node->activation.output_max, output_max);
224   ASSERT_EQ(node->num_inputs, 3);
225   ASSERT_EQ(node->inputs[0], input_id);
226   ASSERT_EQ(node->inputs[1], kernel_id);
227   ASSERT_EQ(node->inputs[2], bias_id);
228   ASSERT_EQ(node->num_outputs, 1);
229   ASSERT_EQ(node->outputs[0], output_id);
230   ASSERT_EQ(node->flags, 0);
231 }
232 
TEST_F(FullyConnectedTestF32,define)233 TEST_F(FullyConnectedTestF32, define)
234 {
235   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
236 
237   xnn_subgraph_t subgraph = nullptr;
238   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
239   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
240 
241   uint32_t input_id = XNN_INVALID_NODE_ID;
242   ASSERT_EQ(
243     xnn_status_success, xnn_define_tensor_value(
244                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr,
245                           /*external_id=*/0, /*flags=*/0, &input_id));
246   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
247 
248   uint32_t kernel_id = XNN_INVALID_NODE_ID;
249   ASSERT_EQ(
250     xnn_status_success,
251     xnn_define_tensor_value(
252       subgraph, xnn_datatype_fp32, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1,
253       /*flags=*/0, &kernel_id));
254 
255   uint32_t bias_id = XNN_INVALID_NODE_ID;
256   ASSERT_EQ(
257     xnn_status_success, xnn_define_tensor_value(
258                           subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(),
259                           /*external_id=*/2, /*flags=*/0, &bias_id));
260 
261   uint32_t output_id = XNN_INVALID_NODE_ID;
262   ASSERT_EQ(
263     xnn_status_success, xnn_define_tensor_value(
264                           subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
265                           /*external_id=*/3, /*flags=*/0, &output_id));
266   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
267 
268   ASSERT_EQ(
269     xnn_status_success,
270     xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0));
271 
272   ASSERT_EQ(subgraph->num_nodes, 1);
273   const struct xnn_node* node = &subgraph->nodes[0];
274   ASSERT_EQ(node->type, xnn_node_type_fully_connected);
275   ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
276   ASSERT_EQ(node->activation.output_min, output_min);
277   ASSERT_EQ(node->activation.output_max, output_max);
278   ASSERT_EQ(node->num_inputs, 3);
279   ASSERT_EQ(node->inputs[0], input_id);
280   ASSERT_EQ(node->inputs[1], kernel_id);
281   ASSERT_EQ(node->inputs[2], bias_id);
282   ASSERT_EQ(node->num_outputs, 1);
283   ASSERT_EQ(node->outputs[0], output_id);
284   ASSERT_EQ(node->flags, 0);
285 }
286 
TEST_F(FullyConnectedTestQS8,matches_operator_api)287 TEST_F(FullyConnectedTestQS8, matches_operator_api)
288 {
289   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
290 
291   xnn_operator_t op = nullptr;
292 
293   std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
294   std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); });
295   std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
296   std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5));
297   std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5));
298   const int8_t input_zero_point = -1;
299   const float input_scale = scale_dist(rng);
300   const float kernel_scale = scale_dist(rng);
301 
302   // Compute reference results, without renormalization.
303   initialize_accumulators_from_bias();
304   for (size_t i = 0; i < batch_size; i++) {
305     for (size_t oc = 0; oc < output_channels; oc++) {
306       for (size_t ic = 0; ic < input_channels; ic++) {
307         accumulators[i * output_channels + oc] +=
308           (int32_t(input[i * input_channels + ic]) - int32_t(input_zero_point)) *
309           int32_t(kernel[oc * input_channels + ic]);
310       }
311     }
312   }
313 
314   // Compute renormalization parameters.
315   const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
316   const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
317 
318   float output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
319   int8_t output_zero_point = int8_t(std::max(
320     std::min(
321       lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
322       long(std::numeric_limits<int8_t>::max())),
323     long(std::numeric_limits<int8_t>::min())));
324   const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point);
325   const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point);
326 
327   // Call operator API.
328   const xnn_status status = xnn_create_fully_connected_nc_qs8(
329     input_channels, output_channels, input_channels, output_channels, input_zero_point, input_scale, kernel_scale,
330     kernel.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max,
331     /*flags=*/0, nullptr, &op);
332   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
333 
334   if (status == xnn_status_unsupported_hardware) {
335     GTEST_SKIP();
336   }
337 
338   ASSERT_EQ(xnn_status_success, status);
339   ASSERT_NE(nullptr, op);
340   ASSERT_EQ(
341     xnn_status_success, xnn_setup_fully_connected_nc_qs8(
342                           op, batch_size, input.data(), operator_output.data(),
343                           /*threadpool=*/nullptr));
344 
345   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
346 
347   // Call subgraph API.
348   xnn_subgraph_t subgraph = nullptr;
349   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
350   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
351 
352   uint32_t input_id = XNN_INVALID_NODE_ID;
353   ASSERT_EQ(
354     xnn_status_success, xnn_define_quantized_tensor_value(
355                           subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(),
356                           input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
357   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
358 
359   uint32_t kernel_id = XNN_INVALID_NODE_ID;
360   ASSERT_EQ(
361     xnn_status_success, xnn_define_quantized_tensor_value(
362                           subgraph, xnn_datatype_qint8, 0, kernel_scale, kernel_dims.size(), kernel_dims.data(),
363                           kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id));
364 
365   uint32_t bias_id = XNN_INVALID_NODE_ID;
366   ASSERT_EQ(
367     xnn_status_success, xnn_define_quantized_tensor_value(
368                           subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(),
369                           bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id));
370 
371   uint32_t output_id = XNN_INVALID_NODE_ID;
372   ASSERT_EQ(
373     xnn_status_success, xnn_define_quantized_tensor_value(
374                           subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(),
375                           output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
376   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
377   ASSERT_EQ(
378     xnn_status_success,
379     xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0));
380 
381   xnn_runtime_t runtime = nullptr;
382   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
383   ASSERT_NE(nullptr, runtime);
384   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
385   std::array<xnn_external_value, 2> external = {
386     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
387   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
388   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
389 
390   // Check outputs match.
391   for (size_t i = 0; i < operator_output.size(); i++) {
392     ASSERT_EQ(subgraph_output[i], operator_output[i]);
393   }
394 }
395 
TEST_F(FullyConnectedTestQU8,matches_operator_api)396 TEST_F(FullyConnectedTestQU8, matches_operator_api)
397 {
398   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
399 
400   xnn_operator_t op = nullptr;
401 
402   std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
403   std::generate(kernel.begin(), kernel.end(), [&]() { return u8dist(rng); });
404   std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); });
405   std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5));
406   std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5));
407   const uint8_t input_zero_point = u8dist(rng);
408   const uint8_t kernel_zero_point = 0;
409   const float input_scale = scale_dist(rng);
410   const float kernel_scale = scale_dist(rng);
411 
412   // Compute reference results, without renormalization.
413   initialize_accumulators_from_bias();
414   for (size_t i = 0; i < batch_size; i++) {
415     for (size_t oc = 0; oc < output_channels; oc++) {
416       for (size_t ic = 0; ic < input_channels; ic++) {
417         accumulators[i * output_channels + oc] +=
418           (int32_t(input[i * input_channels + ic]) - int32_t(input_zero_point)) *
419           (int32_t(kernel[oc * input_channels + ic]) - int32_t(kernel_zero_point));
420       }
421     }
422   }
423 
424   // Compute renormalization parameters.
425   const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
426   const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
427 
428   const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
429   const uint8_t output_zero_point = uint8_t(std::max(
430     std::min(
431       lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
432       long(std::numeric_limits<uint8_t>::max())),
433     long(std::numeric_limits<uint8_t>::min())));
434   const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point);
435   const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point);
436 
437   // Call operator API.
438   const xnn_status status = xnn_create_fully_connected_nc_qu8(
439     input_channels, output_channels, input_channels, output_channels, input_zero_point, input_scale, kernel_zero_point,
440     kernel_scale, kernel.data(), bias.data(), output_zero_point, output_scale, quantized_output_min,
441     quantized_output_max, /*flags=*/0, nullptr, &op);
442   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
443 
444   if (status == xnn_status_unsupported_hardware) {
445     GTEST_SKIP();
446   }
447 
448   ASSERT_EQ(xnn_status_success, status);
449   ASSERT_NE(nullptr, op);
450   ASSERT_EQ(
451     xnn_status_success, xnn_setup_fully_connected_nc_qu8(
452                           op, batch_size, input.data(), operator_output.data(),
453                           /*threadpool=*/nullptr));
454 
455   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
456 
457   // Call subgraph API.
458   xnn_subgraph_t subgraph = nullptr;
459   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
460   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
461 
462   uint32_t input_id = XNN_INVALID_NODE_ID;
463   ASSERT_EQ(
464     xnn_status_success, xnn_define_quantized_tensor_value(
465                           subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(),
466                           input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
467   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
468 
469   uint32_t kernel_id = XNN_INVALID_NODE_ID;
470   ASSERT_EQ(
471     xnn_status_success, xnn_define_quantized_tensor_value(
472                           subgraph, xnn_datatype_quint8, 0, kernel_scale, kernel_dims.size(), kernel_dims.data(),
473                           kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id));
474 
475   uint32_t bias_id = XNN_INVALID_NODE_ID;
476   ASSERT_EQ(
477     xnn_status_success, xnn_define_quantized_tensor_value(
478                           subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(),
479                           bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id));
480 
481   uint32_t output_id = XNN_INVALID_NODE_ID;
482   ASSERT_EQ(
483     xnn_status_success, xnn_define_quantized_tensor_value(
484                           subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(),
485                           output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
486   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
487   ASSERT_EQ(
488     xnn_status_success,
489     xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0));
490 
491   xnn_runtime_t runtime = nullptr;
492   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
493   ASSERT_NE(nullptr, runtime);
494   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
495   std::array<xnn_external_value, 2> external = {
496     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
497   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
498   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
499 
500   // Check outputs match.
501   for (size_t i = 0; i < operator_output.size(); i++) {
502     ASSERT_EQ(subgraph_output[i], operator_output[i]);
503   }
504 }
505 
TEST_F(FullyConnectedTestF32,matches_operator_api)506 TEST_F(FullyConnectedTestF32, matches_operator_api)
507 {
508   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
509 
510   xnn_operator_t op = nullptr;
511 
512   std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
513   std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); });
514   std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
515   std::fill(operator_output.begin(), operator_output.end(), nanf(""));
516   std::fill(subgraph_output.begin(), subgraph_output.end(), nanf(""));
517 
518   // Call operator API.
519   const xnn_status status = xnn_create_fully_connected_nc_f32(
520     input_channels, output_channels, input_channels, output_channels, kernel.data(), bias.data(), output_min,
521     output_max,
522     /*flags=*/0, nullptr, &op);
523   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
524 
525   if (status == xnn_status_unsupported_hardware) {
526     GTEST_SKIP();
527   }
528 
529   ASSERT_EQ(xnn_status_success, status);
530   ASSERT_NE(nullptr, op);
531   ASSERT_EQ(
532     xnn_status_success, xnn_setup_fully_connected_nc_f32(
533                           op, batch_size, input.data(), operator_output.data(),
534                           /*threadpool=*/nullptr));
535 
536   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
537 
538   // Call subgraph API.
539   xnn_subgraph_t subgraph = nullptr;
540   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph));
541   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
542 
543   uint32_t input_id = XNN_INVALID_NODE_ID;
544   ASSERT_EQ(
545     xnn_status_success, xnn_define_tensor_value(
546                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr,
547                           /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
548   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
549 
550   uint32_t kernel_id = XNN_INVALID_NODE_ID;
551   ASSERT_EQ(
552     xnn_status_success, xnn_define_tensor_value(
553                           subgraph, xnn_datatype_fp32, kernel_dims.size(), kernel_dims.data(), kernel.data(),
554                           /*external_id=*/1, /*flags=*/0, &kernel_id));
555 
556   uint32_t bias_id = XNN_INVALID_NODE_ID;
557   ASSERT_EQ(
558     xnn_status_success, xnn_define_tensor_value(
559                           subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(),
560                           /*external_id=*/2, /*flags=*/0, &bias_id));
561 
562   uint32_t output_id = XNN_INVALID_NODE_ID;
563   ASSERT_EQ(
564     xnn_status_success, xnn_define_tensor_value(
565                           subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
566                           /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
567   ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
568   ASSERT_EQ(
569     xnn_status_success,
570     xnn_define_fully_connected(subgraph, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0));
571 
572   xnn_runtime_t runtime = nullptr;
573   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
574   ASSERT_NE(nullptr, runtime);
575   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
576   std::array<xnn_external_value, 2> external = {
577     xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}};
578   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
579   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
580 
581   // Check outputs match.
582   for (size_t i = 0; i < operator_output.size(); i++) {
583     ASSERT_EQ(subgraph_output[i], operator_output[i]);
584   }
585 }
586