xref: /aosp_15_r20/external/XNNPACK/test/conv-hwc-microkernel-tester.h (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <algorithm>
11 #include <cassert>
12 #include <cmath>
13 #include <cstddef>
14 #include <cstdlib>
15 #include <limits>
16 #include <random>
17 #include <vector>
18 
19 #include <xnnpack.h>
20 #include <xnnpack/aligned-allocator.h>
21 #include <xnnpack/pack.h>
22 #include <xnnpack/microfnptr.h>
23 #include <xnnpack/microparams-init.h>
24 
25 
26 class ConvHWCMicrokernelTester {
27 public:
28   enum class Variant {
29     Native,
30     Scalar,
31   };
32 
output_channels_tile(uint32_t output_channels_tile)33   inline ConvHWCMicrokernelTester& output_channels_tile(uint32_t output_channels_tile) {
34     this->output_channels_tile_ = output_channels_tile;
35     return *this;
36   }
37 
output_channels_tile()38   inline uint32_t output_channels_tile() const {
39     return this->output_channels_tile_;
40   }
41 
padding(uint32_t padding)42   inline ConvHWCMicrokernelTester& padding(uint32_t padding) {
43     this->padding_top_ = padding;
44     this->padding_right_ = padding;
45     this->padding_bottom_ = padding;
46     this->padding_left_ = padding;
47     return *this;
48   }
49 
padding_height(uint32_t padding_height)50   inline ConvHWCMicrokernelTester& padding_height(uint32_t padding_height) {
51     this->padding_top_ = padding_height;
52     this->padding_bottom_ = padding_height;
53     return *this;
54   }
55 
padding_width(uint32_t padding_width)56   inline ConvHWCMicrokernelTester& padding_width(uint32_t padding_width) {
57     this->padding_right_ = padding_width;
58     this->padding_left_ = padding_width;
59     return *this;
60   }
61 
padding_top(uint32_t padding_top)62   inline ConvHWCMicrokernelTester& padding_top(uint32_t padding_top) {
63     this->padding_top_ = padding_top;
64     return *this;
65   }
66 
padding_top()67   inline uint32_t padding_top() const {
68     return this->padding_top_;
69   }
70 
padding_right(uint32_t padding_right)71   inline ConvHWCMicrokernelTester& padding_right(uint32_t padding_right) {
72     this->padding_right_ = padding_right;
73     return *this;
74   }
75 
padding_right()76   inline uint32_t padding_right() const {
77     return this->padding_right_;
78   }
79 
padding_bottom(uint32_t padding_bottom)80   inline ConvHWCMicrokernelTester& padding_bottom(uint32_t padding_bottom) {
81     this->padding_bottom_ = padding_bottom;
82     return *this;
83   }
84 
padding_bottom()85   inline uint32_t padding_bottom() const {
86     return this->padding_bottom_;
87   }
88 
padding_left(uint32_t padding_left)89   inline ConvHWCMicrokernelTester& padding_left(uint32_t padding_left) {
90     this->padding_left_ = padding_left;
91     return *this;
92   }
93 
padding_left()94   inline uint32_t padding_left() const {
95     return this->padding_left_;
96   }
97 
input_size(uint32_t input_height,uint32_t input_width)98   inline ConvHWCMicrokernelTester& input_size(uint32_t input_height, uint32_t input_width) {
99     assert(input_height >= 1);
100     assert(input_width >= 1);
101     this->input_height_ = input_height;
102     this->input_width_ = input_width;
103     return *this;
104   }
105 
input_height(uint32_t input_height)106   inline ConvHWCMicrokernelTester& input_height(uint32_t input_height) {
107     assert(input_height >= 1);
108     this->input_height_ = input_height;
109     return *this;
110   }
111 
input_height()112   inline uint32_t input_height() const {
113     return this->input_height_;
114   }
115 
input_width(uint32_t input_width)116   inline ConvHWCMicrokernelTester& input_width(uint32_t input_width) {
117     assert(input_width >= 1);
118     this->input_width_ = input_width;
119     return *this;
120   }
121 
input_width()122   inline uint32_t input_width() const {
123     return this->input_width_;
124   }
125 
input_channels(size_t input_channels)126   inline ConvHWCMicrokernelTester& input_channels(size_t input_channels) {
127     assert(input_channels >= 1);
128     this->input_channels_ = input_channels;
129     return *this;
130   }
131 
input_channels()132   inline size_t input_channels() const {
133     return this->input_channels_;
134   }
135 
output_channels(size_t output_channels)136   inline ConvHWCMicrokernelTester& output_channels(size_t output_channels) {
137     assert(output_channels >= 1);
138     this->output_channels_ = output_channels;
139     return *this;
140   }
141 
output_channels()142   inline size_t output_channels() const {
143     return this->output_channels_;
144   }
145 
packed_output_channels()146   inline size_t packed_output_channels() const {
147     return output_channels() % output_channels_tile() == 0 ? output_channels() : output_channels() / output_channels_tile() * output_channels_tile() + output_channels_tile();
148   }
149 
batch_size(size_t batch_size)150   inline ConvHWCMicrokernelTester& batch_size(size_t batch_size) {
151     assert(batch_size >= 1);
152     this->batch_size_ = batch_size;
153     return *this;
154   }
155 
batch_size()156   inline size_t batch_size() const {
157     return this->batch_size_;
158   }
159 
kernel_size(uint32_t kernel_size)160   inline ConvHWCMicrokernelTester& kernel_size(uint32_t kernel_size) {
161     assert(kernel_size >= 1);
162     this->kernel_height_ = kernel_size;
163     this->kernel_width_ = kernel_size;
164     return *this;
165   }
166 
kernel_height(uint32_t kernel_height)167   inline ConvHWCMicrokernelTester& kernel_height(uint32_t kernel_height) {
168     assert(kernel_height >= 1);
169     this->kernel_height_ = kernel_height;
170     return *this;
171   }
172 
kernel_height()173   inline uint32_t kernel_height() const {
174     return this->kernel_height_;
175   }
176 
kernel_width(uint32_t kernel_width)177   inline ConvHWCMicrokernelTester& kernel_width(uint32_t kernel_width) {
178     assert(kernel_width >= 1);
179     this->kernel_width_ = kernel_width;
180     return *this;
181   }
182 
kernel_width()183   inline uint32_t kernel_width() const {
184     return this->kernel_width_;
185   }
186 
subsampling(uint32_t subsampling)187   inline ConvHWCMicrokernelTester& subsampling(uint32_t subsampling) {
188     assert(subsampling >= 1);
189     this->subsampling_height_ = subsampling;
190     this->subsampling_width_ = subsampling;
191     return *this;
192   }
193 
subsampling_height(uint32_t subsampling_height)194   inline ConvHWCMicrokernelTester& subsampling_height(uint32_t subsampling_height) {
195     assert(subsampling_height >= 1);
196     this->subsampling_height_ = subsampling_height;
197     return *this;
198   }
199 
subsampling_height()200   inline uint32_t subsampling_height() const {
201     return this->subsampling_height_;
202   }
203 
subsampling_width(uint32_t subsampling_width)204   inline ConvHWCMicrokernelTester& subsampling_width(uint32_t subsampling_width) {
205     assert(subsampling_width >= 1);
206     this->subsampling_width_ = subsampling_width;
207     return *this;
208   }
209 
subsampling_width()210   inline uint32_t subsampling_width() const {
211     return this->subsampling_width_;
212   }
213 
output_y_start(uint32_t output_y_start)214   inline ConvHWCMicrokernelTester& output_y_start(uint32_t output_y_start) {
215     this->output_y_start_ = output_y_start;
216     return *this;
217   }
218 
output_y_start()219   inline uint32_t output_y_start() const {
220     return this->output_y_start_;
221   }
222 
output_y_end(uint32_t output_y_end)223   inline ConvHWCMicrokernelTester& output_y_end(uint32_t output_y_end) {
224     this->output_y_end_ = output_y_end;
225     return *this;
226   }
227 
output_y_end()228   inline uint32_t output_y_end() const {
229     if (this->output_y_end_ == std::numeric_limits<uint32_t>::max()) {
230       return output_height();
231     } else {
232       return this->output_y_end_;
233     }
234   }
235 
input_pixel_stride()236   inline size_t input_pixel_stride() const {
237     return input_channels();
238   }
239 
output_pixel_stride()240   inline size_t output_pixel_stride() const {
241     return output_channels();
242   }
243 
output_height()244   inline size_t output_height() const {
245     const size_t padded_input_height = padding_top() + input_height() + padding_bottom();
246     return (std::max<size_t>(padded_input_height + subsampling_height(), kernel_height()) - kernel_height())
247       / subsampling_height();
248   }
249 
output_width()250   inline size_t output_width() const {
251     const size_t padded_input_width = padding_left() + input_width() + padding_right();
252     return (std::max<size_t>(padded_input_width + subsampling_width(), kernel_width()) - kernel_width())
253       / subsampling_width();
254   }
255 
qmin(uint8_t qmin)256   inline ConvHWCMicrokernelTester& qmin(uint8_t qmin) {
257     this->qmin_ = qmin;
258     return *this;
259   }
260 
qmin()261   inline uint8_t qmin() const {
262     return this->qmin_;
263   }
264 
qmax(uint8_t qmax)265   inline ConvHWCMicrokernelTester& qmax(uint8_t qmax) {
266     this->qmax_ = qmax;
267     return *this;
268   }
269 
qmax()270   inline uint8_t qmax() const {
271     return this->qmax_;
272   }
273 
iterations(size_t iterations)274   inline ConvHWCMicrokernelTester& iterations(size_t iterations) {
275     this->iterations_ = iterations;
276     return *this;
277   }
278 
iterations()279   inline size_t iterations() const {
280     return this->iterations_;
281   }
282 
283   void Test(xnn_f32_conv_hwc_ukernel_function conv, Variant variant = Variant::Native) const {
284     ASSERT_LT(output_y_start(), output_height());
285     ASSERT_LE(output_y_end(), output_height());
286     ASSERT_GT(output_y_end(), output_y_start());
287     ASSERT_GE(output_width(), 1);
288     ASSERT_GE(output_height(), 1);
289 
290     std::random_device random_device;
291     auto rng = std::mt19937(random_device());
292     std::uniform_real_distribution<float> f32dist(0.1f, 1.0f);
293 
294     std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
295       batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels()));
296     std::vector<float> zero(XNN_EXTRA_BYTES / sizeof(float) + input_width() * input_channels());
297     std::vector<float> kernel(output_channels() * kernel_height() * kernel_width() * input_channels());
298     std::vector<float> bias(output_channels());
299     std::vector<float> output(batch_size() * ((output_height() * output_width() - 1) * output_pixel_stride() + output_channels()));
300     std::vector<float> output_ref(batch_size() * output_height() * output_width() * output_channels());
301     std::vector<float, AlignedAllocator<float, 64>> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels());
302 
303     for (size_t iteration = 0; iteration < iterations(); iteration++) {
304       std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
305       std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); });
306       std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); });
307       std::fill(output.begin(), output.end(), nanf(""));
308       std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
309 
310       xnn_pack_f32_dconv_oki_w(
311         output_channels(),
312         input_channels(),
313         output_channels_tile(),
314         kernel_height(), kernel_width(),
315         kernel.data(), bias.data(), packed_weights.data(), nullptr);
316 
317       // Compute reference results, without clamping.
318       for (size_t i = 0; i < batch_size(); i++) {
319         for (size_t oy = 0; oy < output_height(); oy++) {
320           for (size_t ox = 0; ox < output_width(); ox++) {
321             for (size_t oc = 0; oc < output_channels(); oc++) {
322               float acc = bias[oc];
323               for (size_t ky = 0; ky < kernel_height(); ky++) {
324                 const size_t iy = oy * subsampling_height() + ky - padding_top();
325                 if (iy < input_height()) {
326                   for (size_t kx = 0; kx < kernel_width(); kx++) {
327                     const size_t ix = ox * subsampling_width() + kx - padding_left();
328                     if (ix < input_width()) {
329                       for (size_t ic = 0; ic < input_channels(); ic++) {
330                         acc +=
331                           input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic] *
332                           kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic];
333                       }
334                     }
335                   }
336                 }
337               }
338               output_ref[((i * output_height() + oy) * output_width() + ox) * output_channels() + oc] = acc;
339             }
340           }
341         }
342       }
343 
344       // Compute clamping parameters.
345       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
346       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
347 
348       const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
349       const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
350 
351       // Clamp reference results.
352       for (float& value : output_ref) {
353         value = std::max(std::min(value, output_max), output_min);
354       }
355 
356       // Prepare parameters.
357       xnn_f32_minmax_params params;
358       switch (variant) {
359         case Variant::Native:
360           xnn_init_f32_minmax_params(&params, output_min, output_max);
361           break;
362         case Variant::Scalar:
363           xnn_init_f32_minmax_scalar_params(&params, output_min, output_max);
364           break;
365       }
366 
367       // Call optimized micro-kernel.
368       conv(
369         input_height(), input_width(),
370         output_y_start(), output_y_end(),
371         input.data(), zero.data(), packed_weights.data(), output.data(),
372         padding_top(), output_channels(),
373         output_pixel_stride() * output_width() * sizeof(float),
374         output_pixel_stride() * sizeof(float),
375         &params);
376 
377       // Verify results.
378       for (size_t i = 0; i < batch_size(); i++) {
379         for (size_t y = output_y_start(); y < output_y_end(); y++) {
380           for (size_t x = 0; x < output_width(); x++) {
381             for (size_t c = 0; c < output_channels(); c++) {
382               ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min)
383                 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
384               ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max)
385                 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
386               ASSERT_NEAR(
387                   output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c],
388                   output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c],
389                   1.0e-4 * std::abs(output_ref[((i * output_height() + y) * output_width() + x) * output_channels() + c]))
390                 << "(x, y) = (" << x << ", " << y << "), channel = " << c;
391             }
392           }
393         }
394       }
395     }
396   }
397 
398  private:
399   uint32_t padding_top_{0};
400   uint32_t padding_right_{0};
401   uint32_t padding_bottom_{0};
402   uint32_t padding_left_{0};
403   size_t input_height_{1};
404   size_t input_width_{1};
405   size_t input_channels_{1};
406   size_t output_channels_{1};
407   uint32_t output_channels_tile_{1};
408   size_t batch_size_{1};
409   uint32_t kernel_height_{1};
410   uint32_t kernel_width_{1};
411   uint32_t subsampling_height_{1};
412   uint32_t subsampling_width_{1};
413   uint32_t output_y_start_{0};
414   uint32_t output_y_end_{std::numeric_limits<uint32_t>::max()};
415   uint8_t qmin_{0};
416   uint8_t qmax_{255};
417   size_t iterations_{1};
418 };
419