xref: /aosp_15_r20/external/XNNPACK/test/argmax-pooling-2d.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <array>
8 #include <cstddef>
9 #include <cstdint>
10 #include <limits>
11 #include <memory>
12 #include <random>
13 
14 #include <xnnpack.h>
15 #include <xnnpack/node-type.h>
16 #include <xnnpack/operator.h>
17 #include <xnnpack/subgraph.h>
18 
19 #include <gtest/gtest.h>
20 
21 namespace {
compute_output_dimension(size_t padded_input_dimension,size_t kernel_dimension)22 inline size_t compute_output_dimension(size_t padded_input_dimension, size_t kernel_dimension)
23 {
24   return padded_input_dimension / kernel_dimension;
25 }
26 }  // namespace
27 
28 class ArgmaxPoolingTestF32 : public ::testing::Test {
29 protected:
ArgmaxPoolingTestF32()30   ArgmaxPoolingTestF32()
31   {
32     random_device = std::unique_ptr<std::random_device>(new std::random_device());
33     rng = std::mt19937((*random_device)());
34     input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15);
35     pooling_size_dist = std::uniform_int_distribution<uint32_t>(2, 5);
36     batch_size = input_size_dist(rng);
37     input_height = input_size_dist(rng);
38     input_width = input_size_dist(rng);
39     channels = input_size_dist(rng);
40     pooling_height = pooling_size_dist(rng);
41     pooling_width = pooling_size_dist(rng);
42     input_padding_top = input_size_dist(rng);
43     input_padding_right = input_size_dist(rng);
44     input_padding_bottom = input_size_dist(rng);
45     input_padding_left = input_size_dist(rng);
46     output_height = compute_output_dimension(input_height + input_padding_top + input_padding_bottom, pooling_height);
47     output_width = compute_output_dimension(input_width + input_padding_left + input_padding_right, pooling_width);
48     input_dims = {batch_size, input_height, input_width, channels};
49     output_dims = {batch_size, output_height, output_width, channels};
50     input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + batch_size * input_height * input_width * channels);
51     operator_output = std::vector<float>(batch_size * output_height * output_width * channels);
52     operator_output_index = std::vector<uint32_t>(batch_size * output_height * output_width * channels);
53     subgraph_output = std::vector<float>(batch_size * output_height * output_width * channels);
54     subgraph_output_index = std::vector<uint32_t>(batch_size * output_height * output_width * channels);
55   }
56 
57   std::unique_ptr<std::random_device> random_device;
58   std::mt19937 rng;
59   std::uniform_int_distribution<uint32_t> input_size_dist;
60   std::uniform_int_distribution<uint32_t> pooling_size_dist;
61   uint32_t batch_size;
62   uint32_t input_height;
63   uint32_t input_width;
64   uint32_t channels;
65   uint32_t pooling_height;
66   uint32_t pooling_width;
67   uint32_t output_height;
68   uint32_t output_width;
69   std::array<size_t, 4> input_dims;
70   std::array<size_t, 4> output_dims;
71   uint32_t input_padding_top;
72   uint32_t input_padding_right;
73   uint32_t input_padding_bottom;
74   uint32_t input_padding_left;
75 
76   uint32_t input_id;
77   uint32_t output_value_id;
78   uint32_t output_index_id;
79 
80   std::vector<float> input;
81   std::vector<float> operator_output;
82   std::vector<uint32_t> operator_output_index;
83   std::vector<float> subgraph_output;
84   std::vector<uint32_t> subgraph_output_index;
85 };
86 
TEST_F(ArgmaxPoolingTestF32,define)87 TEST_F(ArgmaxPoolingTestF32, define)
88 {
89 
90   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
91 
92   xnn_subgraph_t subgraph = nullptr;
93   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
94   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
95 
96   input_id = XNN_INVALID_NODE_ID;
97   ASSERT_EQ(
98     xnn_status_success, xnn_define_tensor_value(
99                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0,
100                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
101   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
102 
103   output_value_id = XNN_INVALID_NODE_ID;
104   ASSERT_EQ(
105     xnn_status_success, xnn_define_tensor_value(
106                           subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1,
107                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_value_id));
108   ASSERT_NE(output_value_id, XNN_INVALID_NODE_ID);
109 
110   output_index_id = XNN_INVALID_NODE_ID;
111   ASSERT_EQ(
112     xnn_status_success, xnn_define_tensor_value(
113                           subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 2,
114                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_index_id));
115   ASSERT_NE(output_index_id, XNN_INVALID_NODE_ID);
116 
117   ASSERT_EQ(
118     xnn_status_success, xnn_define_argmax_pooling_2d(
119                           subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
120                           pooling_height, pooling_width, input_id, output_value_id, output_index_id,
121                           /*flags=*/0));
122 
123   ASSERT_EQ(subgraph->num_nodes, 1);
124   const struct xnn_node* node = &subgraph->nodes[0];
125   ASSERT_EQ(node->type, xnn_node_type_argmax_pooling_2d);
126   ASSERT_EQ(node->compute_type, xnn_compute_type_fp32);
127   ASSERT_EQ(node->params.pooling_2d.padding_top, input_padding_top);
128   ASSERT_EQ(node->params.pooling_2d.padding_right, input_padding_right);
129   ASSERT_EQ(node->params.pooling_2d.padding_bottom, input_padding_bottom);
130   ASSERT_EQ(node->params.pooling_2d.padding_left, input_padding_left);
131   ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height);
132   ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width);
133   ASSERT_EQ(node->num_inputs, 1);
134   ASSERT_EQ(node->inputs[0], input_id);
135   ASSERT_EQ(node->num_outputs, 2);
136   ASSERT_EQ(node->outputs[0], output_value_id);
137   ASSERT_EQ(node->outputs[1], output_index_id);
138   ASSERT_EQ(node->flags, 0);
139 }
140 
TEST_F(ArgmaxPoolingTestF32,matches_operator_api)141 TEST_F(ArgmaxPoolingTestF32, matches_operator_api)
142 {
143   std::uniform_real_distribution<float> f32dist(-255.0f, 255.0f);
144   std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
145   std::fill(operator_output.begin(), operator_output.end(), nanf(""));
146   std::fill(subgraph_output.begin(), subgraph_output.end(), nanf(""));
147 
148   ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
149 
150   // Call operator API.
151   xnn_operator_t op = nullptr;
152   const xnn_status status = xnn_create_argmax_pooling2d_nhwc_f32(
153     input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width,
154     channels, channels, channels, /*flags=*/0, &op);
155   if (status == xnn_status_unsupported_hardware) {
156     GTEST_SKIP();
157   }
158 
159   ASSERT_EQ(xnn_status_success, status);
160   ASSERT_NE(nullptr, op);
161   std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
162 
163   ASSERT_EQ(
164     xnn_status_success, xnn_setup_argmax_pooling2d_nhwc_f32(
165                           op, batch_size, input_height, input_width, input.data(), operator_output.data(),
166                           operator_output_index.data(), /*threadpool=*/nullptr));
167 
168   ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
169 
170   // Call subgraph API.
171   xnn_subgraph_t subgraph = nullptr;
172   ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/3, /*flags=*/0, &subgraph));
173   std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
174   input_id = XNN_INVALID_NODE_ID;
175   ASSERT_EQ(
176     xnn_status_success, xnn_define_tensor_value(
177                           subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0,
178                           /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
179   ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
180 
181   output_value_id = XNN_INVALID_NODE_ID;
182   ASSERT_EQ(
183     xnn_status_success,
184     xnn_define_tensor_value(
185       subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1,
186       /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_value_id));
187   ASSERT_NE(output_value_id, XNN_INVALID_NODE_ID);
188 
189   output_index_id = XNN_INVALID_NODE_ID;
190   ASSERT_EQ(
191     xnn_status_success,
192     xnn_define_tensor_value(
193       subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/2,
194       /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_index_id));
195   ASSERT_NE(output_index_id, XNN_INVALID_NODE_ID);
196 
197   xnn_runtime_t runtime = nullptr;
198   ASSERT_EQ(
199     xnn_status_success, xnn_define_argmax_pooling_2d(
200                           subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left,
201                           pooling_height, pooling_width, input_id, output_value_id, output_index_id,
202                           /*flags=*/0));
203   ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
204   ASSERT_NE(nullptr, runtime);
205   std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
206   std::array<xnn_external_value, 3> external = {
207     xnn_external_value{input_id, input.data()}, xnn_external_value{output_value_id, subgraph_output.data()},
208     xnn_external_value{output_index_id, subgraph_output_index.data()}};
209   ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
210   ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
211 
212   ASSERT_EQ(subgraph_output, operator_output);
213 }
214