1 // Copyright 2021 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <xnnpack.h>
7 #include <xnnpack/aarch32-assembler.h>
8 #include <xnnpack/allocator.h>
9 #include <xnnpack/common.h>
10
11 #include <ios>
12
13 #include "assembler-helpers.h"
14 #include <gtest/gtest.h>
15
16 namespace xnnpack {
17 namespace aarch32 {
TEST(AArch32Assembler,InstructionEncoding)18 TEST(AArch32Assembler, InstructionEncoding) {
19 ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
20 xnn_code_buffer b;
21 xnn_allocate_code_memory(&b, XNN_DEFAULT_CODE_BUFFER_SIZE);
22 Assembler a(&b);
23
24 CHECK_ENCODING(0xE086600B, a.add(r6, r11));
25 CHECK_ENCODING(0xE0810002, a.add(r0, r1, r2));
26 CHECK_ENCODING(0xE28A9080, a.add(r9, r10, 128));
27 CHECK_ENCODING(0xE29D5008, a.adds(r5, r13, 8));
28
29 CHECK_ENCODING(0xE2025007, a.and_(r5, r2, 7));
30
31 CHECK_ENCODING(0xE3CC2003, a.bic(r2, r12, 3));
32
33 CHECK_ENCODING(0xE12FFF1E, a.bx(lr));
34
35 CHECK_ENCODING(0xE3500002, a.cmp(r0, 2));
36 CHECK_ENCODING(0xE1530007, a.cmp(r3, r7));
37
38 // Offset addressing mode.
39 CHECK_ENCODING(0xE59D7060, a.ldr(r7, mem[sp, 96]));
40 // Post-indexed addressing mode.
41 CHECK_ENCODING(0xE490B000, a.ldr(r11, mem[r0], 0));
42 CHECK_ENCODING(0xE490B060, a.ldr(r11, mem[r0], 96));
43 // Offsets out of bounds.
44 EXPECT_ERROR(Error::kInvalidOperand, a.ldr(r7, MemOperand(sp, 4096)));
45 EXPECT_ERROR(Error::kInvalidOperand, a.ldr(r7, MemOperand(sp, -4096)));
46
47 CHECK_ENCODING(0xE1CD66D8, a.ldrd(r6, r7, mem[sp, 104]));
48 CHECK_ENCODING(0xE0CD66D8, a.ldrd(r6, r7, MemOperand(sp, 104, AddressingMode::kPostIndexed)));
49 EXPECT_ERROR(Error::kInvalidOperand, a.ldrd(r6, r8, mem[sp, 104]));
50 EXPECT_ERROR(Error::kInvalidOperand, a.ldrd(r6, r7, mem[sp, 4096]));
51
52 CHECK_ENCODING(0x01A0C007, a.moveq(r12, r7));
53 CHECK_ENCODING(0x31A0C003, a.movlo(r12, r3));
54 CHECK_ENCODING(0x91A0A00C, a.movls(r10, r12));
55 CHECK_ENCODING(0xE1A0A00C, a.mov(r10, r12));
56
57 CHECK_ENCODING(0xE320F000, a.nop());
58
59 CHECK_ENCODING(0xE8BD0FF0, a.pop({r4, r5, r6, r7, r8, r9, r10, r11}));
60 EXPECT_ERROR(Error::kInvalidOperand, a.pop({}));
61 EXPECT_ERROR(Error::kInvalidOperand, a.pop({r1}));
62
63 CHECK_ENCODING(0xE92D0FF0, a.push({r4, r5, r6, r7, r8, r9, r10, r11}));
64 EXPECT_ERROR(Error::kInvalidOperand, a.push({}));
65 EXPECT_ERROR(Error::kInvalidOperand, a.push({r1}));
66
67 CHECK_ENCODING(0xF5D3F000, a.pld(MemOperand(r3, 0)));
68 CHECK_ENCODING(0xF5D3F040, a.pld(MemOperand(r3, 64)));
69
70 CHECK_ENCODING(0xE58D5068, a.str(r5, mem[sp, 104]));
71 EXPECT_ERROR(Error::kInvalidOperand, a.str(r5, MemOperand(sp, 4096)));
72 EXPECT_ERROR(Error::kInvalidOperand, a.str(r5, MemOperand(sp, -4096)));
73
74 CHECK_ENCODING(0xE0487002, a.sub(r7, r8, r2));
75 CHECK_ENCODING(0xE2425010, a.sub(r5, r2, 16));
76 CHECK_ENCODING(0xE2525010, a.subs(r5, r2, 16));
77
78 CHECK_ENCODING(0xE315000F, a.tst(r5, 15));
79
80 CHECK_ENCODING(0xF3B9676E, a.vabs_f32(q3, q15));
81
82 CHECK_ENCODING(0xF24E2DC2, a.vadd_f32(q9, q15, q1));
83
84 CHECK_ENCODING(0xEEB44AC8, a.vcmpe_f32(s8, s16));
85
86 CHECK_ENCODING(0xF3FBE646, a.vcvt_f32_s32(q15, q3));
87 CHECK_ENCODING(0xF3FB6748, a.vcvt_s32_f32(q11, q4));
88
89 CHECK_ENCODING(0xF3FB6148, a.vcvtn_s32_f32(q11, q4));
90
91 CHECK_ENCODING(0xF3FF8C4F, a.vdup_8(q12, d15[7]));
92 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vdup_8(q12, d15[8]));
93 CHECK_ENCODING(0xF3FE8C4F, a.vdup_16(q12, d15[3]));
94 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vdup_16(q12, d15[4]));
95 CHECK_ENCODING(0xF3FC8C4F, a.vdup_32(q12, d15[1]));
96 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vdup_32(q12, d15[2]));
97
98 CHECK_ENCODING(0xF2BE04C6, a.vext_8(q0, q15, q3, 4));
99 EXPECT_ERROR(Error::kInvalidOperand, a.vext_8(q0, q15, q3, 16));
100
101 CHECK_ENCODING(0xF423070F, a.vld1_8({d0}, mem[r3]));
102 CHECK_ENCODING(0xF423070D, a.vld1_8({d0}, mem[r3]++));
103 CHECK_ENCODING(0xF4230A0F, a.vld1_8({d0-d1}, mem[r3]));
104 CHECK_ENCODING(0xF423060F, a.vld1_8({d0-d2}, mem[r3]));
105 CHECK_ENCODING(0xF423020F, a.vld1_8({d0-d3}, mem[r3]));
106 CHECK_ENCODING(0xF42A4705, a.vld1_8({d4}, mem[r10], r5));
107 CHECK_ENCODING(0xF4294A0D, a.vld1_8({q2}, mem[r9]++));
108
109 CHECK_ENCODING(0xF42C178F, a.vld1_32({d1}, mem[r12]));
110 CHECK_ENCODING(0xF42C178D, a.vld1_32({d1}, mem[r12]++));
111 CHECK_ENCODING(0xF42C1A8D, a.vld1_32({d1-d2}, mem[r12]++));
112 CHECK_ENCODING(0xF42C168D, a.vld1_32({d1-d3}, mem[r12]++));
113 CHECK_ENCODING(0xF42C128D, a.vld1_32({d1-d4}, mem[r12]++));
114
115 CHECK_ENCODING(0xF4A8780F, a.vld1_32({d7[0]}, mem[r8]));
116 CHECK_ENCODING(0xF4A3488D, a.vld1_32({d4[1]}, mem[r3]++));
117 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vld1_32({d0[2]}, mem[r3]));
118
119 CHECK_ENCODING(0xF4294A8D, a.vld1_32({q2}, mem[r9]++));
120
121 CHECK_ENCODING(0xF4A54C8F, a.vld1r_32({d4}, mem[r5]));
122 CHECK_ENCODING(0xF4A54CAF, a.vld1r_32({d4, d5}, mem[r5]));
123 CHECK_ENCODING(0xF4A54CAD, a.vld1r_32({d4, d5}, mem[r5]++));
124 EXPECT_ERROR(Error::kInvalidOperand, a.vld1r_32({d4, d5}, mem[r5, 4]));
125 EXPECT_ERROR(Error::kInvalidOperand, a.vld1r_32({d4, d6}, mem[r5]));
126
127 CHECK_ENCODING(0xF4A54D8F, a.vld2r_32({d4, d5}, mem[r5]));
128 CHECK_ENCODING(0xF4A54DAF, a.vld2r_32({d4, d6}, mem[r5]));
129 EXPECT_ERROR(Error::kInvalidOperand, a.vld2r_32({d4, d5}, mem[r5, 4]));
130 EXPECT_ERROR(Error::kInvalidOperand, a.vld2r_32({d4, d7}, mem[r5]));
131
132 CHECK_ENCODING(0xF4A54E8F, a.vld3r_32({d4, d5, d6}, mem[r5]));
133 CHECK_ENCODING(0xF4A54EAF, a.vld3r_32({d4, d6, d8}, mem[r5]));
134 EXPECT_ERROR(Error::kInvalidOperand, a.vld3r_32({d4, d5, d6}, mem[r5, 4]));
135 EXPECT_ERROR(Error::kInvalidOperand, a.vld3r_32({d4, d5, d7}, mem[r5]));
136 EXPECT_ERROR(Error::kInvalidOperand, a.vld3r_32({d4, d6, d7}, mem[r5]));
137 EXPECT_ERROR(Error::kInvalidOperand, a.vld3r_32({d4, d6, d9}, mem[r5]));
138
139 CHECK_ENCODING(0xECD90B08, a.vldm(mem[r9], {d16-d19}));
140 CHECK_ENCODING(0xECF90B08, a.vldm(mem[r9]++, {d16-d19}));
141 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vldm(mem[r9], {d8-d0}));
142 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vldm(mem[r9], {d0-d16}));
143 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vldm(mem[r9], DRegisterList(d31, 2)));
144
145 CHECK_ENCODING(0xEC930A01, a.vldm(mem[r3], {s0}));
146 CHECK_ENCODING(0xECB30A01, a.vldm(mem[r3]++, {s0}));
147 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vldm(mem[r3], {s4-s0}));
148 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vldm(mem[r3], SRegisterList(s31, 2)));
149
150 CHECK_ENCODING(0xEDD97A0E, a.vldr(s15, mem[r9, 56]));
151 CHECK_ENCODING(0xEDD97AFF, a.vldr(s15, mem[r9, 1020]));
152 CHECK_ENCODING(0xED597AFF, a.vldr(s15, mem[r9, -1020]));
153 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(s15, MemOperand(r9, 56, AddressingMode::kPostIndexed)));
154 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(s15, mem[r9, 1024]));
155 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(s15, mem[r9, -1024]));
156 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(s15, mem[r9, 1018]));
157
158 CHECK_ENCODING(0xED99FB0E, a.vldr(d15, mem[r9, 56]));
159 CHECK_ENCODING(0xED99FBFF, a.vldr(d15, mem[r9, 1020]));
160 CHECK_ENCODING(0xED19FBFF, a.vldr(d15, mem[r9, -1020]));
161 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(d15, MemOperand(r9, 56, AddressingMode::kPostIndexed)));
162 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(d15, mem[r9, 1024]));
163 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(d15, mem[r9, -1024]));
164 EXPECT_ERROR(Error::kInvalidOperand, a.vldr(d15, mem[r9, 1018]));
165
166 CHECK_ENCODING(0xF20E26C6, a.vmax_s8(q1, q15, q3));
167 CHECK_ENCODING(0xF24ECFC4, a.vmax_f32(q14, q15, q2));
168
169 CHECK_ENCODING(0xF20E26D6, a.vmin_s8(q1, q15, q3));
170 CHECK_ENCODING(0xF220EFC6, a.vmin_f32(q7, q8, q3));
171
172 CHECK_ENCODING(0xEE04AA01, a.vmla_f32(s20, s8, s2));
173
174 CHECK_ENCODING(0xF3E80140, a.vmla_f32(q8, q4, d0[0]));
175 CHECK_ENCODING(0xF3EC0160, a.vmla_f32(q8, q6, d0[1]));
176 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vmla_f32(q8, q4, d0[2]));
177
178 CHECK_ENCODING(0xF2D9E246, a.vmlal_s16(q15, d9, d6[0]));
179 CHECK_ENCODING(0xF2D8424A, a.vmlal_s16(q10, d8, d2[1]));
180 CHECK_ENCODING(0xF2D88264, a.vmlal_s16(q12, d8, d4[2]));
181 CHECK_ENCODING(0xF2D8626A, a.vmlal_s16(q11, d8, d2[3]));
182 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vmlal_s16(q15, d9, d6[4]));
183
184 CHECK_ENCODING(0xF2C0E050, a.vmov(q15, 0));
185 EXPECT_ERROR(Error::kInvalidOperand, a.vmov(q15, 1));
186
187 CHECK_ENCODING(0xEEB0EA4F, a.vmov(s28, s30));
188 CHECK_ENCODING(0xF2245114, a.vmov(d5, d4));
189 CHECK_ENCODING(0xF26101B1, a.vmov(d16, d17));
190 CHECK_ENCODING(0xEC420B1F, a.vmov(d15, r0, r2));
191 CHECK_ENCODING(0xF26041F0, a.vmov(q10, q8));
192
193 CHECK_ENCODING(0xEEB08A49, a.vmov_f32(s16, s18));
194 CHECK_ENCODING(0x5EB08A44, a.vmovpl_f32(s16, s8));
195 CHECK_ENCODING(0x4EB08A64, a.vmovmi_f32(s16, s9));
196
197 CHECK_ENCODING(0xEEB0AB48, a.vmov_f64(d10, d8));
198
199 CHECK_ENCODING(0xF2880A10, a.vmovl_s8(q0, d0));
200
201 CHECK_ENCODING(0xEEF1FA10, a.vmrs(APSR_nzcv, FPSCR));
202
203 CHECK_ENCODING(0xF34E2DD2, a.vmul_f32(q9, q15, q1));
204
205 CHECK_ENCODING(0xF3F927EE, a.vneg_f32(q9, q15));
206
207 CHECK_ENCODING(0xECBD8B10, a.vpop({d8-d15}));
208 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpop({d0-d16}));
209 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpop({d4-d0}));
210 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpop(DRegisterList(d31, 2)));
211
212 CHECK_ENCODING(0xED2D8B10, a.vpush({d8-d15}));
213 CHECK_ENCODING(0xED6D4B08, a.vpush({d20-d23}));
214 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpush({d8-d7}));
215 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpush({d0-d16}));
216 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpush(DRegisterList(d31, 2)));
217
218 CHECK_ENCODING(0xED2D4A08, a.vpush({s8-s15}));
219 CHECK_ENCODING(0xED2DAA04, a.vpush({s20-s23}));
220 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpush({s8-s2}));
221 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vpush(SRegisterList(s31, 2)));
222
223 CHECK_ENCODING(0xF25E00D2, a.vqadd_s16(q8, q15, q1));
224
225 CHECK_ENCODING(0xF3A82CCE, a.vqdmulh_s32(q1, q12, d14[0]));
226 CHECK_ENCODING(0xF3A82CEE, a.vqdmulh_s32(q1, q12, d14[1]));
227 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vqdmulh_s32(q1, q12, d14[2]));
228 EXPECT_ERROR(Error::kInvalidOperand, a.vqdmulh_s32(q1, q12, d16[0]));
229
230 CHECK_ENCODING(0xF3B232A6, a.vqmovn_s16(d3, q11));
231 CHECK_ENCODING(0xF3F602A0, a.vqmovn_s32(d16, q8));
232
233 CHECK_ENCODING(0xF22C247E, a.vqshl_s32(q1, q15, q6));
234
235 CHECK_ENCODING(0xF264C560, a.vrshl_s32(q14, q8, q2));
236
237 CHECK_ENCODING(0xFE666D41, a.vsdot_s8(q11, q3, d1[0]));
238 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vsdot_s8(q11, q3, d1[2]));
239
240 CHECK_ENCODING(0xF40B070F, a.vst1_8({d0}, mem[r11]));
241 CHECK_ENCODING(0xF40B070D, a.vst1_8({d0}, mem[r11]++));
242 CHECK_ENCODING(0xF40B0707, a.vst1_8({d0}, mem[r11], r7));
243 CHECK_ENCODING(0xF48B000F, a.vst1_8({d0[0]}, mem[r11]));
244 CHECK_ENCODING(0xF48B00EF, a.vst1_8({d0[7]}, mem[r11]));
245 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vst1_8(d0[8], mem[r11]));
246
247 CHECK_ENCODING(0xF40B074F, a.vst1_16({d0}, mem[r11]));
248 CHECK_ENCODING(0xF40B074D, a.vst1_16({d0}, mem[r11]++));
249 CHECK_ENCODING(0xF40B0747, a.vst1_16({d0}, mem[r11], r7));
250 CHECK_ENCODING(0xF48B040F, a.vst1_16({d0[0]}, mem[r11]));
251 CHECK_ENCODING(0xF48B04CF, a.vst1_16({d0[3]}, mem[r11]));
252 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vst1_16(d0[4], mem[r11]));
253
254 CHECK_ENCODING(0xF44B0280, a.vst1_32({d16-d19}, mem[r11], r0));
255 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vst1_32({d0-d4}, mem[r11], r0));
256 EXPECT_ERROR(Error::kInvalidOperand, a.vst1_32({d16-d19}, mem[r11], sp));
257 EXPECT_ERROR(Error::kInvalidOperand, a.vst1_32({d16-d19}, mem[r11], pc));
258 CHECK_ENCODING(0xF404168F, a.vst1_32({d1-d3}, mem[r4]));
259 CHECK_ENCODING(0xF44B0A8D, a.vst1_32({d16-d17}, mem[r11]++));
260 CHECK_ENCODING(0xF4CB080F, a.vst1_32({d16[0]}, mem[r11]));
261 // The surrounding braces are optional, but makes it look closer to native assembly.
262 CHECK_ENCODING(0xF4CB080F, a.vst1_32(d16[0], mem[r11]));
263 CHECK_ENCODING(0xF4CB088F, a.vst1_32(d16[1], mem[r11]));
264 EXPECT_ERROR(Error::kInvalidLaneIndex, a.vst1_32(d16[2], mem[r11]));
265 CHECK_ENCODING(0xF4C6C80D, a.vst1_32({d28[0]}, mem[r6]++));
266
267 CHECK_ENCODING(0xEC868B04, a.vstm(mem[r6], {d8-d9}));
268 CHECK_ENCODING(0xECA7EB02, a.vstm(mem[r7]++, {d14}));
269 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vstm(mem[r6], {d8-d28}));
270 EXPECT_ERROR(Error::kInvalidRegisterListLength, a.vstm(mem[r6], DRegisterList(d31, 2)));
271
272 CHECK_ENCODING(0xED868A00, a.vstr(s16, mem[r6]));
273 CHECK_ENCODING(0xED868A02, a.vstr(s16, mem[r6, 8]));
274 CHECK_ENCODING(0xED868AFF, a.vstr(s16, mem[r6, 1020]));
275 CHECK_ENCODING(0xED068AFF, a.vstr(s16, mem[r6, -1020]));
276 EXPECT_ERROR(Error::kInvalidOperand, a.vstr(s16, MemOperand(r6, 8, AddressingMode::kPostIndexed)));
277 EXPECT_ERROR(Error::kInvalidOperand, a.vstr(s16, mem[r6, 1024]));
278 EXPECT_ERROR(Error::kInvalidOperand, a.vstr(s16, mem[r6, -1024]));
279 EXPECT_ERROR(Error::kInvalidOperand, a.vstr(s16, mem[r6, 1018]));
280
281 ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&b));
282 }
283
TEST(AArch32Assembler,Label)284 TEST(AArch32Assembler, Label) {
285 ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
286 xnn_code_buffer b;
287 xnn_allocate_code_memory(&b, XNN_DEFAULT_CODE_BUFFER_SIZE);
288 Assembler a(&b);
289
290 Label l1;
291 a.add(r0, r0, r0);
292
293 // Branch to unbound label.
294 auto b1 = a.offset<uint32_t*>();
295 a.beq(l1);
296
297 a.add(r1, r1, r1);
298
299 auto b2 = a.offset<uint32_t*>();
300 a.bne(l1);
301
302 a.add(r2, r2, r2);
303
304 a.bind(l1);
305
306 // Check that b1 and b2 are both patched after binding l1.
307 EXPECT_INSTR(0x0A000002, *b1);
308 EXPECT_INSTR(0x1A000000, *b2);
309
310 a.add(r0, r1, r2);
311
312 // Branch to bound label.
313 auto b3 = a.offset<uint32_t*>();
314 a.bhi(l1);
315 auto b4 = a.offset<uint32_t*>();
316 a.bhs(l1);
317 auto b5 = a.offset<uint32_t*>();
318 a.blo(l1);
319 auto b6 = a.offset<uint32_t*>();
320 a.b(l1);
321
322 EXPECT_INSTR(0x8AFFFFFD, *b3);
323 EXPECT_INSTR(0x2AFFFFFC, *b4);
324 EXPECT_INSTR(0x3AFFFFFB, *b5);
325 EXPECT_INSTR(0xEAFFFFFA, *b6);
326
327 // Binding a bound label is an error.
328 a.bind(l1);
329 EXPECT_ERROR(Error::kLabelAlreadyBound, a.bind(l1));
330
331 // Check for bind failure due to too many users of label.
332 Label lfail;
333 a.reset();
334 // Arbitrary high number of users that we probably won't support.
335 for (int i = 0; i < 1000; i++) {
336 a.beq(lfail);
337 }
338 EXPECT_EQ(Error::kLabelHasTooManyUsers, a.error());
339
340 ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&b));
341 }
342
TEST(AArch32Assembler,Align)343 TEST(AArch32Assembler, Align) {
344 ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
345 xnn_code_buffer b;
346 xnn_allocate_code_memory(&b, XNN_DEFAULT_CODE_BUFFER_SIZE);
347 Assembler a(&b);
348
349 a.add(r0, r1, r2);
350 a.align(4);
351 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(a.offset<uint32_t*>()) & 0x3);
352 EXPECT_EQ(4, a.code_size_in_bytes());
353
354 a.align(8);
355 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(a.offset<uint32_t*>()) & 0x7);
356 EXPECT_EQ(8, a.code_size_in_bytes());
357
358 a.add(r0, r1, r2);
359 a.align(8);
360 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(a.offset<uint32_t*>()) & 0x7);
361 EXPECT_EQ(16, a.code_size_in_bytes());
362
363 a.add(r0, r1, r2);
364 EXPECT_EQ(20, a.code_size_in_bytes());
365
366 a.align(16);
367 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(a.offset<uint32_t*>()) & 0xF);
368 EXPECT_EQ(32, a.code_size_in_bytes());
369
370 a.add(r0, r1, r2);
371 a.add(r0, r1, r2);
372 EXPECT_EQ(40, a.code_size_in_bytes());
373
374 a.align(16);
375 EXPECT_EQ(0, reinterpret_cast<uintptr_t>(a.offset<uint32_t*>()) & 0xF);
376 EXPECT_EQ(48, a.code_size_in_bytes());
377
378 // Not power-of-two.
379 EXPECT_ERROR(Error::kInvalidOperand, a.align(6));
380 // Is power-of-two but is not a multiple of instruction size.
381 EXPECT_ERROR(Error::kInvalidOperand, a.align(2));
382
383 ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&b));
384 }
385
TEST(AArch32Assembler,CoreRegisterList)386 TEST(AArch32Assembler, CoreRegisterList) {
387 EXPECT_EQ(0x3, CoreRegisterList({r0, r1}));
388 EXPECT_EQ(0xFC00, CoreRegisterList({r10, r11, r12, r13, r14, r15}));
389
390 EXPECT_FALSE(CoreRegisterList({}).has_more_than_one_register());
391 EXPECT_FALSE(CoreRegisterList({r0}).has_more_than_one_register());
392 EXPECT_FALSE(CoreRegisterList({r1}).has_more_than_one_register());
393 EXPECT_TRUE(CoreRegisterList({r0, r1}).has_more_than_one_register());
394 }
395
TEST(AArch32Assembler,ConsecutiveRegisterList)396 TEST(AArch32Assembler, ConsecutiveRegisterList) {
397 SRegisterList s_list_1 = SRegisterList(s0, s9);
398 EXPECT_EQ(s_list_1.start, s0);
399 EXPECT_EQ(s_list_1.length, 10);
400
401 SRegisterList s_list_2 = {s4 - s11};
402 EXPECT_EQ(s_list_2.start, s4);
403 EXPECT_EQ(s_list_2.length, 8);
404
405 DRegisterList d_list_1 = DRegisterList(d4, d5);
406 EXPECT_EQ(d_list_1.start, d4);
407 EXPECT_EQ(d_list_1.length, 2);
408
409 DRegisterList d_list_2 = {d4 - d11};
410 EXPECT_EQ(d_list_2.start, d4);
411 EXPECT_EQ(d_list_2.length, 8);
412
413 QRegisterList q_list_1 = {q3-q3};
414 EXPECT_EQ(q_list_1.start, q3);
415 EXPECT_EQ(q_list_1.length, 1);
416
417 DRegisterList d_from_q_1 = static_cast<DRegisterList>(q_list_1);
418 EXPECT_EQ(d_from_q_1.start, d6);
419 EXPECT_EQ(d_from_q_1.length, 2);
420
421 QRegisterList q_list_2 = {q4-q9};
422 EXPECT_EQ(q_list_2.start, q4);
423 EXPECT_EQ(q_list_2.length, 6);
424
425 DRegisterList d_from_q_2 = static_cast<DRegisterList>(q_list_2);
426 EXPECT_EQ(d_from_q_2.start, d8);
427 EXPECT_EQ(d_from_q_2.length, 12);
428 }
429
TEST(AArch32Assembler,MemOperand)430 TEST(AArch32Assembler, MemOperand) {
431 EXPECT_EQ(MemOperand(r0, 4, AddressingMode::kOffset), (mem[r0, 4]));
432 }
433
TEST(AArch32Assembler,DRegisterLane)434 TEST(AArch32Assembler, DRegisterLane) {
435 EXPECT_EQ((DRegisterLane{2, 0}), d2[0]);
436 EXPECT_EQ((DRegisterLane{2, 1}), d2[1]);
437 }
438
TEST(AArch32Assembler,QRegister)439 TEST(AArch32Assembler, QRegister) {
440 EXPECT_EQ(q0.low(), d0);
441 EXPECT_EQ(q0.high(), d1);
442 EXPECT_EQ(q1.low(), d2);
443 EXPECT_EQ(q1.high(), d3);
444 EXPECT_EQ(q15.low(), d30);
445 EXPECT_EQ(q15.high(), d31);
446 }
447
TEST(AArch32Assembler,CodeBufferOverflow)448 TEST(AArch32Assembler, CodeBufferOverflow) {
449 ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
450 xnn_code_buffer b;
451 // Requested memory is rounded to page size.
452 xnn_allocate_code_memory(&b, 4);
453 Assembler a(&b);
454 for (int i = 0; i < b.capacity; i += 1 << kInstructionSizeInBytesLog2) {
455 a.add(r0, r0, 2);
456 }
457 EXPECT_EQ(Error::kNoError, a.error());
458
459 a.bx(lr);
460 EXPECT_EQ(Error::kOutOfMemory, a.error());
461
462 ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&b));
463 }
464
TEST(AArch32Assembler,BoundOverflow)465 TEST(AArch32Assembler, BoundOverflow) {
466 ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
467 xnn_code_buffer b;
468 // Requested memory is rounded to page size.
469 xnn_allocate_code_memory(&b, 4);
470 Assembler a(&b);
471 Label l1;
472 for (int i = 0; i < b.capacity; i += 1 << kInstructionSizeInBytesLog2) {
473 a.add(r0, r0, 2);
474 }
475 EXPECT_EQ(Error::kNoError, a.error());
476
477 // This is out of bounds, not written.
478 a.bhi(l1);
479 EXPECT_EQ(Error::kOutOfMemory, a.error());
480
481 a.bind(l1);
482 EXPECT_EQ(false, l1.bound);
483
484 ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&b));
485 }
486
487 #if XNN_ARCH_ARM && XNN_PLATFORM_JIT
TEST(AArch32Assembler,JitAllocCodeBuffer)488 TEST(AArch32Assembler, JitAllocCodeBuffer) {
489 ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
490 typedef uint32_t (*Func)(uint32_t);
491
492 xnn_code_buffer b;
493 xnn_allocate_code_memory(&b, XNN_DEFAULT_CODE_BUFFER_SIZE);
494
495 Assembler a(&b);
496 a.add(r0, r0, 2);
497 a.bx(lr);
498
499 Func fn = reinterpret_cast<Func>(a.finalize());
500
501 ASSERT_EQ(3, fn(1));
502
503 ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&b));
504 }
505 #endif // XNN_ARCH_ARM && XNN_PLATFORM_JIT
506 } // namespace aarch32
507 } // namespace xnnpack
508