1 // Auto-generated file. Do not edit!
2 // Template: src/qs8-igemm/MRx4c2s4-sse.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2022 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <emmintrin.h>
13
14 #include <xnnpack/igemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17
18
xnn_qu8_igemm_minmax_fp32_ukernel_3x4c2s4__sse2_ld128(size_t mr,size_t nc,size_t kc,size_t ks,const uint8_t ** restrict a,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,size_t a_offset,const uint8_t * zero,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])19 void xnn_qu8_igemm_minmax_fp32_ukernel_3x4c2s4__sse2_ld128(
20 size_t mr,
21 size_t nc,
22 size_t kc,
23 size_t ks,
24 const uint8_t** restrict a,
25 const void* restrict w,
26 uint8_t* restrict c,
27 size_t cm_stride,
28 size_t cn_stride,
29 size_t a_offset,
30 const uint8_t* zero,
31 const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
32 {
33 assert(mr != 0);
34 assert(mr <= 3);
35 assert(nc != 0);
36 assert(kc != 0);
37 assert(ks != 0);
38 assert(ks % (3 * sizeof(void*)) == 0);
39 assert(a_offset % sizeof(uint8_t) == 0);
40 assert(a != NULL);
41 assert(w != NULL);
42 assert(c != NULL);
43
44 kc = round_up_po2(kc, 8 * sizeof(uint8_t));
45 uint8_t* c0 = c;
46 uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
47 if XNN_UNPREDICTABLE(mr < 2) {
48 c1 = c0;
49 }
50 uint8_t* c2 = (uint8_t*) ((uintptr_t) c1 + cm_stride);
51 if XNN_UNPREDICTABLE(mr <= 2) {
52 c2 = c1;
53 }
54
55 do {
56 __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
57 __m128i vacc1x0123 = vacc0x0123;
58 __m128i vacc2x0123 = vacc0x0123;
59 w = (const void*) ((const int32_t*) w + 4);
60
61 size_t p = ks;
62 do {
63 const uint8_t* restrict a0 = a[0];
64 if XNN_UNPREDICTABLE(a0 != zero) {
65 a0 = (const uint8_t*) ((uintptr_t) a0 + a_offset);
66 }
67 const uint8_t* restrict a1 = a[1];
68 if XNN_UNPREDICTABLE(a1 != zero) {
69 a1 = (const uint8_t*) ((uintptr_t) a1 + a_offset);
70 }
71 const uint8_t* restrict a2 = a[2];
72 if XNN_UNPREDICTABLE(a2 != zero) {
73 a2 = (const uint8_t*) ((uintptr_t) a2 + a_offset);
74 }
75 a += 3;
76
77 size_t k = kc;
78 const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
79 const __m128i vzero = _mm_setzero_si128();
80 do {
81 const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
82 __m128i vxa0 = _mm_unpacklo_epi8(va0, vzero);
83 a0 += 8;
84 const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
85 __m128i vxa1 = _mm_unpacklo_epi8(va1, vzero);
86 a1 += 8;
87 const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
88 __m128i vxa2 = _mm_unpacklo_epi8(va2, vzero);
89 a2 += 8;
90
91 const __m128i vb01 = _mm_loadu_si128((const __m128i*) w);
92 const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb01, vzero), vb_zero_point);
93 const __m128i vxb1 = _mm_sub_epi16(_mm_unpackhi_epi8(vb01, vzero), vb_zero_point);
94
95 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb0));
96 vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
97 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb0));
98 vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
99 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb0));
100 vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
101
102 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb1));
103 vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
104 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb1));
105 vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
106 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb1));
107 vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
108 const __m128i vb23 = _mm_loadu_si128((const __m128i*) ((const uint8_t*) w + 16));
109 const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb23, vzero), vb_zero_point);
110 const __m128i vxb3 = _mm_sub_epi16(_mm_unpackhi_epi8(vb23, vzero), vb_zero_point);
111
112 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb2));
113 vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
114 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb2));
115 vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
116 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb2));
117 vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
118
119 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb3));
120 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb3));
121 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb3));
122
123 w = (const void*) ((const uint8_t*) w + 32);
124 k -= 8 * sizeof(uint8_t);
125 } while (k != 0);
126 p -= 3 * sizeof(void*);
127 } while (p != 0);
128
129 __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
130 __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
131 __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
132
133 const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
134 vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
135 vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
136 vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale);
137
138 const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
139 vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
140 vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
141 vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
142
143 vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
144 vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
145 vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
146
147 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
148 __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
149 __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
150
151 __m128i vout = _mm_packus_epi16(vacc01x0123, vacc22x0123);
152
153 vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
154
155 if (nc >= 4) {
156 unaligned_store_u32(c2, (uint32_t) _mm_cvtsi128_si32(_mm_shuffle_epi32(vout, _MM_SHUFFLE(2, 2, 2, 2))));
157 c2 = (uint8_t*) ((uintptr_t) c2 + cn_stride);
158 unaligned_store_u32(c1, (uint32_t) _mm_cvtsi128_si32(_mm_shuffle_epi32(vout, _MM_SHUFFLE(1, 1, 1, 1))));
159 c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
160 unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
161 c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
162
163 a = (const uint8_t**restrict) ((uintptr_t) a - ks);
164
165 nc -= 4;
166 } else {
167 if (nc & 2) {
168 unaligned_store_u16(c2, (uint16_t) _mm_extract_epi16(vout, 4));
169 c2 += 2;
170 unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
171 c1 += 2;
172 unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
173 c0 += 2;
174 vout = _mm_srli_epi32(vout, 16);
175 }
176 if (nc & 1) {
177 *c2 = (uint8_t) _mm_extract_epi16(vout, 4);
178 *c1 = (uint8_t) _mm_extract_epi16(vout, 2);
179 *c0 = (uint8_t) _mm_cvtsi128_si32(vout);
180 }
181
182 nc = 0;
183 }
184 } while (nc != 0);
185 }
186