xref: /aosp_15_r20/external/XNNPACK/src/qu8-igemm/gen/3x4c2-minmax-fp32-sse2-ld128.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-igemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/igemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17 
18 
xnn_qu8_igemm_minmax_fp32_ukernel_3x4c2__sse2_ld128(size_t mr,size_t nc,size_t kc,size_t ks,const uint8_t ** restrict a,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,size_t a_offset,const uint8_t * zero,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])19 void xnn_qu8_igemm_minmax_fp32_ukernel_3x4c2__sse2_ld128(
20     size_t mr,
21     size_t nc,
22     size_t kc,
23     size_t ks,
24     const uint8_t** restrict a,
25     const void* restrict w,
26     uint8_t* restrict c,
27     size_t cm_stride,
28     size_t cn_stride,
29     size_t a_offset,
30     const uint8_t* zero,
31     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
32 {
33   assert(mr != 0);
34   assert(mr <= 3);
35   assert(nc != 0);
36   assert(kc != 0);
37   assert(ks != 0);
38   assert(ks % (3 * sizeof(void*)) == 0);
39   assert(a_offset % sizeof(uint8_t) == 0);
40   assert(a != NULL);
41   assert(w != NULL);
42   assert(c != NULL);
43 
44   kc = round_up_po2(kc, 2 * sizeof(uint8_t));
45   uint8_t* c0 = c;
46   uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
47   if XNN_UNPREDICTABLE(mr < 2) {
48     c1 = c0;
49   }
50   uint8_t* c2 = (uint8_t*) ((uintptr_t) c1 + cm_stride);
51   if XNN_UNPREDICTABLE(mr <= 2) {
52     c2 = c1;
53   }
54 
55   do {
56     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
57     __m128i vacc1x0123 = vacc0x0123;
58     __m128i vacc2x0123 = vacc0x0123;
59     w = (const void*) ((const int32_t*) w + 4);
60 
61     size_t p = ks;
62     do {
63       const uint8_t* restrict a0 = a[0];
64       if XNN_UNPREDICTABLE(a0 != zero) {
65         a0 = (const uint8_t*) ((uintptr_t) a0 + a_offset);
66       }
67       const uint8_t* restrict a1 = a[1];
68       if XNN_UNPREDICTABLE(a1 != zero) {
69         a1 = (const uint8_t*) ((uintptr_t) a1 + a_offset);
70       }
71       const uint8_t* restrict a2 = a[2];
72       if XNN_UNPREDICTABLE(a2 != zero) {
73         a2 = (const uint8_t*) ((uintptr_t) a2 + a_offset);
74       }
75       a += 3;
76 
77       size_t k = kc;
78       const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
79       const __m128i vzero = _mm_setzero_si128();
80       while (k >= 8 * sizeof(uint8_t)) {
81         const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
82         const __m128i vxa0 = _mm_unpacklo_epi8(va0, vzero);
83         a0 += 8;
84         const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
85         const __m128i vxa1 = _mm_unpacklo_epi8(va1, vzero);
86         a1 += 8;
87         const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
88         const __m128i vxa2 = _mm_unpacklo_epi8(va2, vzero);
89         a2 += 8;
90 
91         const __m128i vb01 = _mm_loadu_si128((const __m128i*) w);
92         const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb01, vzero), vb_zero_point);
93         const __m128i vxb1 = _mm_sub_epi16(_mm_unpackhi_epi8(vb01, vzero), vb_zero_point);
94 
95         vacc0x0123 = _mm_add_epi32(vacc0x0123,
96           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
97         vacc1x0123 = _mm_add_epi32(vacc1x0123,
98           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
99         vacc2x0123 = _mm_add_epi32(vacc2x0123,
100           _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
101 
102         vacc0x0123 = _mm_add_epi32(vacc0x0123,
103           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
104         vacc1x0123 = _mm_add_epi32(vacc1x0123,
105           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
106         vacc2x0123 = _mm_add_epi32(vacc2x0123,
107           _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
108         const __m128i vb23 = _mm_loadu_si128((const __m128i*) ((const uint8_t*) w + 16));
109         const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb23, vzero), vb_zero_point);
110         const __m128i vxb3 = _mm_sub_epi16(_mm_unpackhi_epi8(vb23, vzero), vb_zero_point);
111 
112         vacc0x0123 = _mm_add_epi32(vacc0x0123,
113           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
114         vacc1x0123 = _mm_add_epi32(vacc1x0123,
115           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
116         vacc2x0123 = _mm_add_epi32(vacc2x0123,
117           _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
118 
119         vacc0x0123 = _mm_add_epi32(vacc0x0123,
120           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
121         vacc1x0123 = _mm_add_epi32(vacc1x0123,
122           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
123         vacc2x0123 = _mm_add_epi32(vacc2x0123,
124           _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
125 
126         w = (const void*) ((const uint8_t*) w + 32);
127         k -= 8 * sizeof(uint8_t);
128       }
129       if (k != 0) {
130         const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
131         const __m128i vxa0 = _mm_unpacklo_epi8(va0, vzero);
132         a0 = (const uint8_t*) ((uintptr_t) a0 + k);
133         const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
134         const __m128i vxa1 = _mm_unpacklo_epi8(va1, vzero);
135         a1 = (const uint8_t*) ((uintptr_t) a1 + k);
136         const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
137         const __m128i vxa2 = _mm_unpacklo_epi8(va2, vzero);
138         a2 = (const uint8_t*) ((uintptr_t) a2 + k);
139 
140         const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
141         w = (const void*) ((const uint8_t*) w + 8);
142         const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb0, vzero), vb_zero_point);
143 
144         vacc0x0123 = _mm_add_epi32(vacc0x0123,
145           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
146         vacc1x0123 = _mm_add_epi32(vacc1x0123,
147           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
148         vacc2x0123 = _mm_add_epi32(vacc2x0123,
149           _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
150 
151         if (k > 2 * sizeof(uint8_t)) {
152           const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w);
153           w = (const void*) ((const uint8_t*) w + 8);
154           const __m128i vxb1 = _mm_sub_epi16(_mm_unpacklo_epi8(vb1, vzero), vb_zero_point);
155 
156           vacc0x0123 = _mm_add_epi32(vacc0x0123,
157             _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
158           vacc1x0123 = _mm_add_epi32(vacc1x0123,
159             _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
160           vacc2x0123 = _mm_add_epi32(vacc2x0123,
161             _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
162 
163           if (k > 4 * sizeof(uint8_t)) {
164             const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w);
165             w = (const void*) ((const uint8_t*) w + 8);
166             const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb2, vzero), vb_zero_point);
167 
168             vacc0x0123 = _mm_add_epi32(vacc0x0123,
169               _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
170             vacc1x0123 = _mm_add_epi32(vacc1x0123,
171               _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
172             vacc2x0123 = _mm_add_epi32(vacc2x0123,
173               _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
174           }
175         }
176       }
177       p -= 3 * sizeof(void*);
178     } while (p != 0);
179 
180     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
181     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
182     __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
183 
184     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
185     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
186     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
187     vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale);
188 
189     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
190     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
191     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
192     vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
193 
194     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
195     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
196     vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
197 
198     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
199     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
200     __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
201 
202     __m128i vout = _mm_packus_epi16(vacc01x0123, vacc22x0123);
203 
204     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
205 
206     if (nc >= 4) {
207       unaligned_store_u32(c2, (uint32_t) _mm_cvtsi128_si32(_mm_shuffle_epi32(vout, _MM_SHUFFLE(2, 2, 2, 2))));
208       c2 = (uint8_t*) ((uintptr_t) c2 + cn_stride);
209       unaligned_store_u32(c1, (uint32_t) _mm_cvtsi128_si32(_mm_shuffle_epi32(vout, _MM_SHUFFLE(1, 1, 1, 1))));
210       c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
211       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
212       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
213 
214       a = (const uint8_t**restrict) ((uintptr_t) a - ks);
215 
216       nc -= 4;
217     } else {
218       if (nc & 2) {
219         unaligned_store_u16(c2, (uint16_t) _mm_extract_epi16(vout, 4));
220         c2 += 2;
221         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
222         c1 += 2;
223         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
224         c0 += 2;
225         vout = _mm_srli_epi32(vout, 16);
226       }
227       if (nc & 1) {
228         *c2 = (uint8_t) _mm_extract_epi16(vout, 4);
229         *c1 = (uint8_t) _mm_extract_epi16(vout, 2);
230         *c0 = (uint8_t) _mm_cvtsi128_si32(vout);
231       }
232 
233       nc = 0;
234     }
235   } while (nc != 0);
236 }
237