xref: /aosp_15_r20/external/XNNPACK/src/qu8-igemm/gen/1x4c8-minmax-fp32-xop-ld64.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-igemm/MRx4c8-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/igemm.h>
20 #include <xnnpack/math.h>
21 #include <xnnpack/unaligned.h>
22 
23 
xnn_qu8_igemm_minmax_fp32_ukernel_1x4c8__xop_ld64(size_t mr,size_t nc,size_t kc,size_t ks,const uint8_t ** restrict a,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,size_t a_offset,const uint8_t * zero,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])24 void xnn_qu8_igemm_minmax_fp32_ukernel_1x4c8__xop_ld64(
25     size_t mr,
26     size_t nc,
27     size_t kc,
28     size_t ks,
29     const uint8_t** restrict a,
30     const void* restrict w,
31     uint8_t* restrict c,
32     size_t cm_stride,
33     size_t cn_stride,
34     size_t a_offset,
35     const uint8_t* zero,
36     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
37 {
38   assert(mr != 0);
39   assert(mr <= 1);
40   assert(nc != 0);
41   assert(kc != 0);
42   assert(ks != 0);
43   assert(ks % (1 * sizeof(void*)) == 0);
44   assert(a_offset % sizeof(uint8_t) == 0);
45   assert(a != NULL);
46   assert(w != NULL);
47   assert(c != NULL);
48 
49   kc = round_up_po2(kc, 8);
50   uint8_t* c0 = c;
51 
52   do {
53     __m128i vacc0x0 = _mm_cvtsi32_si128(((const int*) w)[0]);
54     __m128i vacc0x1 = _mm_cvtsi32_si128(((const int*) w)[1]);
55     __m128i vacc0x2 = _mm_cvtsi32_si128(((const int*) w)[2]);
56     __m128i vacc0x3 = _mm_cvtsi32_si128(((const int*) w)[3]);
57     w = (const int32_t*) w + 4;
58 
59     size_t p = ks;
60     do {
61       const uint8_t* restrict a0 = a[0];
62       if XNN_UNPREDICTABLE(a0 != zero) {
63         a0 = (const uint8_t*) ((uintptr_t) a0 + a_offset);
64       }
65       a += 1;
66 
67       size_t k = 0;
68       const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
69       while (k < kc) {
70         const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
71         const __m128i vxa0 = _mm_cvtepu8_epi16(va0);
72         a0 += 8;
73 
74         const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
75         const __m128i vxb0 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb0), vb_zero_point);
76 
77         vacc0x0 = _mm_maddd_epi16(vxa0, vxb0, vacc0x0);
78         const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 8));
79         const __m128i vxb1 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb1), vb_zero_point);
80 
81         vacc0x1 = _mm_maddd_epi16(vxa0, vxb1, vacc0x1);
82         const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 16));
83         const __m128i vxb2 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb2), vb_zero_point);
84 
85         vacc0x2 = _mm_maddd_epi16(vxa0, vxb2, vacc0x2);
86         const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 24));
87         const __m128i vxb3 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb3), vb_zero_point);
88 
89         vacc0x3 = _mm_maddd_epi16(vxa0, vxb3, vacc0x3);
90 
91         w = (const void*) ((const uint8_t*) w + 32);
92         k += 8 * sizeof(uint8_t);
93       }
94       p -= 1 * sizeof(void*);
95     } while (p != 0);
96 
97     const __m128i vacc0x01 = _mm_hadd_epi32(vacc0x0, vacc0x1);
98     const __m128i vacc0x23 = _mm_hadd_epi32(vacc0x2, vacc0x3);
99 
100     __m128i vacc0x0123 = _mm_hadd_epi32(vacc0x01, vacc0x23);
101 
102     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
103 
104     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
105     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
106 
107     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
108     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
109 
110     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
111 
112     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
113     __m128i vacc00x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc0x0123), voutput_zero_point);
114 
115     __m128i vout = _mm_packus_epi16(vacc00x0123, vacc00x0123);
116 
117     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
118 
119     if (nc >= 4) {
120       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
121       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
122 
123       a = (const uint8_t**restrict) ((uintptr_t) a - ks);
124 
125       nc -= 4;
126     } else {
127       if (nc & 2) {
128         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
129         c0 += 2;
130         vout = _mm_srli_epi32(vout, 16);
131       }
132       if (nc & 1) {
133         *c0 = (uint8_t) _mm_extract_epi8(vout, 0);
134       }
135 
136       nc = 0;
137     }
138   } while (nc != 0);
139 }
140