xref: /aosp_15_r20/external/XNNPACK/src/qu8-gemm/gen/3x4c8-minmax-fp32-xop-ld64.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c8-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 #include <xnnpack/unaligned.h>
22 
23 
xnn_qu8_gemm_minmax_fp32_ukernel_3x4c8__xop_ld64(size_t mr,size_t nc,size_t kc,const uint8_t * restrict a,size_t a_stride,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])24 void xnn_qu8_gemm_minmax_fp32_ukernel_3x4c8__xop_ld64(
25     size_t mr,
26     size_t nc,
27     size_t kc,
28     const uint8_t* restrict a,
29     size_t a_stride,
30     const void* restrict w,
31     uint8_t* restrict c,
32     size_t cm_stride,
33     size_t cn_stride,
34     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
35 {
36   assert(mr != 0);
37   assert(mr <= 3);
38   assert(nc != 0);
39   assert(kc != 0);
40   assert(kc % sizeof(uint8_t) == 0);
41   assert(a != NULL);
42   assert(w != NULL);
43   assert(c != NULL);
44 
45   kc = round_up_po2(kc, 8);
46   const uint8_t* a0 = a;
47   uint8_t* c0 = c;
48   const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
49   uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
50   if XNN_UNPREDICTABLE(mr < 2) {
51     a1 = a0;
52     c1 = c0;
53   }
54   const uint8_t* a2 = (const uint8_t*) ((uintptr_t) a1 + a_stride);
55   uint8_t* c2 = (uint8_t*) ((uintptr_t) c1 + cm_stride);
56   if XNN_UNPREDICTABLE(mr <= 2) {
57     a2 = a1;
58     c2 = c1;
59   }
60 
61   do {
62     __m128i vacc0x0 = _mm_cvtsi32_si128(((const int*) w)[0]);
63     __m128i vacc0x1 = _mm_cvtsi32_si128(((const int*) w)[1]);
64     __m128i vacc0x2 = _mm_cvtsi32_si128(((const int*) w)[2]);
65     __m128i vacc0x3 = _mm_cvtsi32_si128(((const int*) w)[3]);
66     __m128i vacc1x0 = vacc0x0;
67     __m128i vacc1x1 = vacc0x1;
68     __m128i vacc1x2 = vacc0x2;
69     __m128i vacc1x3 = vacc0x3;
70     __m128i vacc2x0 = vacc0x0;
71     __m128i vacc2x1 = vacc0x1;
72     __m128i vacc2x2 = vacc0x2;
73     __m128i vacc2x3 = vacc0x3;
74     w = (const int32_t*) w + 4;
75 
76     size_t k = 0;
77     const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
78     while (k < kc) {
79       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
80       const __m128i vxa0 = _mm_cvtepu8_epi16(va0);
81       a0 += 8;
82       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
83       const __m128i vxa1 = _mm_cvtepu8_epi16(va1);
84       a1 += 8;
85       const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
86       const __m128i vxa2 = _mm_cvtepu8_epi16(va2);
87       a2 += 8;
88 
89       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
90       const __m128i vxb0 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb0), vb_zero_point);
91 
92       vacc0x0 = _mm_maddd_epi16(vxa0, vxb0, vacc0x0);
93       vacc1x0 = _mm_maddd_epi16(vxa1, vxb0, vacc1x0);
94       vacc2x0 = _mm_maddd_epi16(vxa2, vxb0, vacc2x0);
95       const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 8));
96       const __m128i vxb1 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb1), vb_zero_point);
97 
98       vacc0x1 = _mm_maddd_epi16(vxa0, vxb1, vacc0x1);
99       vacc1x1 = _mm_maddd_epi16(vxa1, vxb1, vacc1x1);
100       vacc2x1 = _mm_maddd_epi16(vxa2, vxb1, vacc2x1);
101       const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 16));
102       const __m128i vxb2 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb2), vb_zero_point);
103 
104       vacc0x2 = _mm_maddd_epi16(vxa0, vxb2, vacc0x2);
105       vacc1x2 = _mm_maddd_epi16(vxa1, vxb2, vacc1x2);
106       vacc2x2 = _mm_maddd_epi16(vxa2, vxb2, vacc2x2);
107       const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 24));
108       const __m128i vxb3 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb3), vb_zero_point);
109 
110       vacc0x3 = _mm_maddd_epi16(vxa0, vxb3, vacc0x3);
111       vacc1x3 = _mm_maddd_epi16(vxa1, vxb3, vacc1x3);
112       vacc2x3 = _mm_maddd_epi16(vxa2, vxb3, vacc2x3);
113 
114       w = (const void*) ((const uint8_t*) w + 32);
115       k += 8 * sizeof(uint8_t);
116     }
117 
118     const __m128i vacc0x01 = _mm_hadd_epi32(vacc0x0, vacc0x1);
119     const __m128i vacc0x23 = _mm_hadd_epi32(vacc0x2, vacc0x3);
120     const __m128i vacc1x01 = _mm_hadd_epi32(vacc1x0, vacc1x1);
121     const __m128i vacc1x23 = _mm_hadd_epi32(vacc1x2, vacc1x3);
122     const __m128i vacc2x01 = _mm_hadd_epi32(vacc2x0, vacc2x1);
123     const __m128i vacc2x23 = _mm_hadd_epi32(vacc2x2, vacc2x3);
124 
125     __m128i vacc0x0123 = _mm_hadd_epi32(vacc0x01, vacc0x23);
126     __m128i vacc1x0123 = _mm_hadd_epi32(vacc1x01, vacc1x23);
127     __m128i vacc2x0123 = _mm_hadd_epi32(vacc2x01, vacc2x23);
128 
129     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
130     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
131     __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
132 
133     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
134     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
135     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
136     vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale);
137 
138     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
139     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
140     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
141     vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
142 
143     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
144     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
145     vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
146 
147     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
148     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
149     __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
150 
151     __m128i vout = _mm_packus_epi16(vacc01x0123, vacc22x0123);
152 
153     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
154 
155     if (nc >= 4) {
156       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
157       unaligned_store_u32(c1, (uint32_t) _mm_extract_epi32(vout, 1));
158       unaligned_store_u32(c2, (uint32_t) _mm_extract_epi32(vout, 2));
159 
160       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
161       c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
162       c2 = (uint8_t*) ((uintptr_t) c2 + cn_stride);
163 
164       a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
165       a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
166       a2 = (const uint8_t*) ((uintptr_t) a2 - kc);
167 
168       nc -= 4;
169     } else {
170       if (nc & 2) {
171         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
172         c0 += 2;
173         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
174         c1 += 2;
175         unaligned_store_u16(c2, (uint16_t) _mm_extract_epi16(vout, 4));
176         c2 += 2;
177         vout = _mm_srli_epi32(vout, 16);
178       }
179       if (nc & 1) {
180         *c0 = (uint8_t) _mm_extract_epi8(vout, 0);
181         *c1 = (uint8_t) _mm_extract_epi8(vout, 4);
182         *c2 = (uint8_t) _mm_extract_epi8(vout, 8);
183       }
184 
185       nc = 0;
186     }
187   } while (nc != 0);
188 }
189