1 // Auto-generated file. Do not edit!
2 // Template: src/qs8-gemm/MRx4c2s4-sse.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2022 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <emmintrin.h>
13
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17
18
19
xnn_qu8_gemm_minmax_fp32_ukernel_3x4c2s4__sse2_ld64(size_t mr,size_t nc,size_t kc,const uint8_t * restrict a,size_t a_stride,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_qu8_gemm_minmax_fp32_ukernel_3x4c2s4__sse2_ld64(
21 size_t mr,
22 size_t nc,
23 size_t kc,
24 const uint8_t* restrict a,
25 size_t a_stride,
26 const void* restrict w,
27 uint8_t* restrict c,
28 size_t cm_stride,
29 size_t cn_stride,
30 const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
31 {
32 assert(mr != 0);
33 assert(mr <= 3);
34 assert(nc != 0);
35 assert(kc != 0);
36 assert(kc % sizeof(uint8_t) == 0);
37 assert(a != NULL);
38 assert(w != NULL);
39 assert(c != NULL);
40
41 kc = round_up_po2(kc, 8 * sizeof(uint8_t));
42 const uint8_t* a0 = a;
43 uint8_t* c0 = c;
44 const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
45 uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
46 if XNN_UNPREDICTABLE(mr < 2) {
47 a1 = a0;
48 c1 = c0;
49 }
50 const uint8_t* a2 = (const uint8_t*) ((uintptr_t) a1 + a_stride);
51 uint8_t* c2 = (uint8_t*) ((uintptr_t) c1 + cm_stride);
52 if XNN_UNPREDICTABLE(mr <= 2) {
53 a2 = a1;
54 c2 = c1;
55 }
56
57 do {
58 __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
59 __m128i vacc1x0123 = vacc0x0123;
60 __m128i vacc2x0123 = vacc0x0123;
61 w = (const void*) ((const int32_t*) w + 4);
62
63 size_t k = kc;
64 const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
65 const __m128i vzero = _mm_setzero_si128();
66 do {
67 const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
68 __m128i vxa0 = _mm_unpacklo_epi8(va0, vzero);
69 a0 += 8;
70 const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
71 __m128i vxa1 = _mm_unpacklo_epi8(va1, vzero);
72 a1 += 8;
73 const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
74 __m128i vxa2 = _mm_unpacklo_epi8(va2, vzero);
75 a2 += 8;
76
77 const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
78 const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb0, vzero), vb_zero_point);
79
80 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb0));
81 vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
82 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb0));
83 vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
84 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb0));
85 vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
86 const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 8));
87 const __m128i vxb1 = _mm_sub_epi16(_mm_unpacklo_epi8(vb1, vzero), vb_zero_point);
88
89 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb1));
90 vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
91 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb1));
92 vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
93 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb1));
94 vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
95 const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 16));
96 const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb2, vzero), vb_zero_point);
97
98 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb2));
99 vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
100 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb2));
101 vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
102 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb2));
103 vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
104 const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 24));
105 const __m128i vxb3 = _mm_sub_epi16(_mm_unpacklo_epi8(vb3, vzero), vb_zero_point);
106
107 vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb3));
108 vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb3));
109 vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb3));
110
111 w = (const void*) ((const uint8_t*) w + 32);
112 k -= 8 * sizeof(uint8_t);
113 } while (k != 0);
114
115 __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
116 __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
117 __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
118
119 const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
120 vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
121 vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
122 vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale);
123
124 const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
125 vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
126 vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
127 vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
128
129 vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
130 vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
131 vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
132
133 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
134 __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
135 __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
136
137 __m128i vout = _mm_packus_epi16(vacc01x0123, vacc22x0123);
138
139 vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
140
141 if (nc >= 4) {
142 unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
143 vout = _mm_shuffle_epi32(vout, _MM_SHUFFLE(0, 3, 2, 1));
144 unaligned_store_u32(c1, (uint32_t) _mm_cvtsi128_si32(vout));
145 vout = _mm_shuffle_epi32(vout, _MM_SHUFFLE(0, 3, 2, 1));
146 unaligned_store_u32(c2, (uint32_t) _mm_cvtsi128_si32(vout));
147
148 c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
149 c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
150 c2 = (uint8_t*) ((uintptr_t) c2 + cn_stride);
151
152 a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
153 a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
154 a2 = (const uint8_t*) ((uintptr_t) a2 - kc);
155
156 nc -= 4;
157 } else {
158 if (nc & 2) {
159 unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
160 c0 += 2;
161 unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
162 c1 += 2;
163 unaligned_store_u16(c2, (uint16_t) _mm_extract_epi16(vout, 4));
164 c2 += 2;
165 vout = _mm_srli_epi32(vout, 16);
166 }
167 if (nc & 1) {
168 *c0 = (uint8_t) _mm_cvtsi128_si32(vout);
169 *c1 = (uint8_t) _mm_extract_epi16(vout, 2);
170 *c2 = (uint8_t) _mm_extract_epi16(vout, 4);
171 }
172
173 nc = 0;
174 }
175 } while (nc != 0);
176 }
177