xref: /aosp_15_r20/external/XNNPACK/src/qu8-gemm/gen/3x4c2s4-minmax-fp32-sse2-ld64.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2s4-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2022 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17 
18 
19 
xnn_qu8_gemm_minmax_fp32_ukernel_3x4c2s4__sse2_ld64(size_t mr,size_t nc,size_t kc,const uint8_t * restrict a,size_t a_stride,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_qu8_gemm_minmax_fp32_ukernel_3x4c2s4__sse2_ld64(
21     size_t mr,
22     size_t nc,
23     size_t kc,
24     const uint8_t* restrict a,
25     size_t a_stride,
26     const void* restrict w,
27     uint8_t* restrict c,
28     size_t cm_stride,
29     size_t cn_stride,
30     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
31 {
32   assert(mr != 0);
33   assert(mr <= 3);
34   assert(nc != 0);
35   assert(kc != 0);
36   assert(kc % sizeof(uint8_t) == 0);
37   assert(a != NULL);
38   assert(w != NULL);
39   assert(c != NULL);
40 
41   kc = round_up_po2(kc, 8 * sizeof(uint8_t));
42   const uint8_t* a0 = a;
43   uint8_t* c0 = c;
44   const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
45   uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
46   if XNN_UNPREDICTABLE(mr < 2) {
47     a1 = a0;
48     c1 = c0;
49   }
50   const uint8_t* a2 = (const uint8_t*) ((uintptr_t) a1 + a_stride);
51   uint8_t* c2 = (uint8_t*) ((uintptr_t) c1 + cm_stride);
52   if XNN_UNPREDICTABLE(mr <= 2) {
53     a2 = a1;
54     c2 = c1;
55   }
56 
57   do {
58     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
59     __m128i vacc1x0123 = vacc0x0123;
60     __m128i vacc2x0123 = vacc0x0123;
61     w = (const void*) ((const int32_t*) w + 4);
62 
63     size_t k = kc;
64     const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
65     const __m128i vzero = _mm_setzero_si128();
66     do {
67       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
68       __m128i vxa0 = _mm_unpacklo_epi8(va0, vzero);
69       a0 += 8;
70       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
71       __m128i vxa1 = _mm_unpacklo_epi8(va1, vzero);
72       a1 += 8;
73       const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
74       __m128i vxa2 = _mm_unpacklo_epi8(va2, vzero);
75       a2 += 8;
76 
77       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
78       const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb0, vzero), vb_zero_point);
79 
80       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb0));
81       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
82       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb0));
83       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
84       vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb0));
85       vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
86       const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 8));
87       const __m128i vxb1 = _mm_sub_epi16(_mm_unpacklo_epi8(vb1, vzero), vb_zero_point);
88 
89       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb1));
90       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
91       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb1));
92       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
93       vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb1));
94       vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
95       const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 16));
96       const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb2, vzero), vb_zero_point);
97 
98       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb2));
99       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
100       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb2));
101       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
102       vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb2));
103       vxa2 = _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 3, 2, 1));
104       const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 24));
105       const __m128i vxb3 = _mm_sub_epi16(_mm_unpacklo_epi8(vb3, vzero), vb_zero_point);
106 
107       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb3));
108       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb3));
109       vacc2x0123 = _mm_add_epi32(vacc2x0123, _mm_madd_epi16(vxa2, vxb3));
110 
111       w = (const void*) ((const uint8_t*) w + 32);
112       k -= 8 * sizeof(uint8_t);
113     } while (k != 0);
114 
115     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
116     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
117     __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
118 
119     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
120     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
121     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
122     vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale);
123 
124     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
125     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
126     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
127     vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
128 
129     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
130     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
131     vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
132 
133     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
134     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
135     __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
136 
137     __m128i vout = _mm_packus_epi16(vacc01x0123, vacc22x0123);
138 
139     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
140 
141     if (nc >= 4) {
142       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
143       vout = _mm_shuffle_epi32(vout, _MM_SHUFFLE(0, 3, 2, 1));
144       unaligned_store_u32(c1, (uint32_t) _mm_cvtsi128_si32(vout));
145       vout = _mm_shuffle_epi32(vout, _MM_SHUFFLE(0, 3, 2, 1));
146       unaligned_store_u32(c2, (uint32_t) _mm_cvtsi128_si32(vout));
147 
148       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
149       c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
150       c2 = (uint8_t*) ((uintptr_t) c2 + cn_stride);
151 
152       a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
153       a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
154       a2 = (const uint8_t*) ((uintptr_t) a2 - kc);
155 
156       nc -= 4;
157     } else {
158       if (nc & 2) {
159         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
160         c0 += 2;
161         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
162         c1 += 2;
163         unaligned_store_u16(c2, (uint16_t) _mm_extract_epi16(vout, 4));
164         c2 += 2;
165         vout = _mm_srli_epi32(vout, 16);
166       }
167       if (nc & 1) {
168         *c0 = (uint8_t) _mm_cvtsi128_si32(vout);
169         *c1 = (uint8_t) _mm_extract_epi16(vout, 2);
170         *c2 = (uint8_t) _mm_extract_epi16(vout, 4);
171       }
172 
173       nc = 0;
174     }
175   } while (nc != 0);
176 }
177