xref: /aosp_15_r20/external/XNNPACK/src/qu8-gemm/gen/2x4c2s4-minmax-fp32-xop-ld128.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2s4-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2022 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 #include <xnnpack/unaligned.h>
22 
23 
24 
xnn_qu8_gemm_minmax_fp32_ukernel_2x4c2s4__xop_ld128(size_t mr,size_t nc,size_t kc,const uint8_t * restrict a,size_t a_stride,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])25 void xnn_qu8_gemm_minmax_fp32_ukernel_2x4c2s4__xop_ld128(
26     size_t mr,
27     size_t nc,
28     size_t kc,
29     const uint8_t* restrict a,
30     size_t a_stride,
31     const void* restrict w,
32     uint8_t* restrict c,
33     size_t cm_stride,
34     size_t cn_stride,
35     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
36 {
37   assert(mr != 0);
38   assert(mr <= 2);
39   assert(nc != 0);
40   assert(kc != 0);
41   assert(kc % sizeof(uint8_t) == 0);
42   assert(a != NULL);
43   assert(w != NULL);
44   assert(c != NULL);
45 
46   kc = round_up_po2(kc, 8 * sizeof(uint8_t));
47   const uint8_t* a0 = a;
48   uint8_t* c0 = c;
49   const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
50   uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
51   if XNN_UNPREDICTABLE(mr != 2) {
52     a1 = a0;
53     c1 = c0;
54   }
55 
56   do {
57     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
58     __m128i vacc1x0123 = vacc0x0123;
59     w = (const void*) ((const int32_t*) w + 4);
60 
61     size_t k = kc;
62     const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
63     const __m128i vzero = _mm_setzero_si128();
64     do {
65       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
66       __m128i vxa0 = _mm_cvtepu8_epi16(va0);
67       a0 += 8;
68       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
69       __m128i vxa1 = _mm_cvtepu8_epi16(va1);
70       a1 += 8;
71 
72       const __m128i vb01 = _mm_loadu_si128((const __m128i*) w);
73       const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb01, vzero), vb_zero_point);
74       const __m128i vxb1 = _mm_sub_epi16(_mm_unpackhi_epi8(vb01, vzero), vb_zero_point);
75 
76       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb0, vacc0x0123);
77       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
78       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb0, vacc1x0123);
79       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
80 
81       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb1, vacc0x0123);
82       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
83       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb1, vacc1x0123);
84       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
85       const __m128i vb23 = _mm_loadu_si128((const __m128i*) ((const uint8_t*) w + 16));
86       const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb23, vzero), vb_zero_point);
87       const __m128i vxb3 = _mm_sub_epi16(_mm_unpackhi_epi8(vb23, vzero), vb_zero_point);
88 
89       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb2, vacc0x0123);
90       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
91       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb2, vacc1x0123);
92       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
93 
94       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb3, vacc0x0123);
95       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb3, vacc1x0123);
96 
97       w = (const void*) ((const uint8_t*) w + 32);
98       k -= 8 * sizeof(uint8_t);
99     } while (k != 0);
100 
101     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
102     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
103 
104     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
105     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
106     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
107 
108     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
109     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
110     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
111 
112     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
113     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
114 
115     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
116     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
117 
118     __m128i vout = _mm_packus_epi16(vacc01x0123, vacc01x0123);
119 
120     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
121 
122     if (nc >= 4) {
123       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
124       unaligned_store_u32(c1, (uint32_t) _mm_extract_epi32(vout, 1));
125 
126       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
127       c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
128 
129       a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
130       a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
131 
132       nc -= 4;
133     } else {
134       if (nc & 2) {
135         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
136         c0 += 2;
137         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
138         c1 += 2;
139         vout = _mm_srli_epi32(vout, 16);
140       }
141       if (nc & 1) {
142         *c0 = (uint8_t) _mm_extract_epi8(vout, 0);
143         *c1 = (uint8_t) _mm_extract_epi8(vout, 4);
144       }
145 
146       nc = 0;
147     }
148   } while (nc != 0);
149 }
150