xref: /aosp_15_r20/external/XNNPACK/src/qu8-gemm/gen/2x4c2s4-minmax-fp32-sse41-ld128.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2s4-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2022 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <smmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17 
18 
19 
xnn_qu8_gemm_minmax_fp32_ukernel_2x4c2s4__sse41_ld128(size_t mr,size_t nc,size_t kc,const uint8_t * restrict a,size_t a_stride,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_qu8_gemm_minmax_fp32_ukernel_2x4c2s4__sse41_ld128(
21     size_t mr,
22     size_t nc,
23     size_t kc,
24     const uint8_t* restrict a,
25     size_t a_stride,
26     const void* restrict w,
27     uint8_t* restrict c,
28     size_t cm_stride,
29     size_t cn_stride,
30     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
31 {
32   assert(mr != 0);
33   assert(mr <= 2);
34   assert(nc != 0);
35   assert(kc != 0);
36   assert(kc % sizeof(uint8_t) == 0);
37   assert(a != NULL);
38   assert(w != NULL);
39   assert(c != NULL);
40 
41   kc = round_up_po2(kc, 8 * sizeof(uint8_t));
42   const uint8_t* a0 = a;
43   uint8_t* c0 = c;
44   const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
45   uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
46   if XNN_UNPREDICTABLE(mr != 2) {
47     a1 = a0;
48     c1 = c0;
49   }
50 
51   do {
52     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
53     __m128i vacc1x0123 = vacc0x0123;
54     w = (const void*) ((const int32_t*) w + 4);
55 
56     size_t k = kc;
57     const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
58     const __m128i vzero = _mm_setzero_si128();
59     do {
60       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
61       __m128i vxa0 = _mm_cvtepu8_epi16(va0);
62       a0 += 8;
63       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
64       __m128i vxa1 = _mm_cvtepu8_epi16(va1);
65       a1 += 8;
66 
67       const __m128i vb01 = _mm_loadu_si128((const __m128i*) w);
68       const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb01, vzero), vb_zero_point);
69       const __m128i vxb1 = _mm_sub_epi16(_mm_unpackhi_epi8(vb01, vzero), vb_zero_point);
70 
71       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb0));
72       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
73       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb0));
74       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
75 
76       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb1));
77       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
78       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb1));
79       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
80       const __m128i vb23 = _mm_loadu_si128((const __m128i*) ((const uint8_t*) w + 16));
81       const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb23, vzero), vb_zero_point);
82       const __m128i vxb3 = _mm_sub_epi16(_mm_unpackhi_epi8(vb23, vzero), vb_zero_point);
83 
84       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb2));
85       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
86       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb2));
87       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
88 
89       vacc0x0123 = _mm_add_epi32(vacc0x0123, _mm_madd_epi16(vxa0, vxb3));
90       vacc1x0123 = _mm_add_epi32(vacc1x0123, _mm_madd_epi16(vxa1, vxb3));
91 
92       w = (const void*) ((const uint8_t*) w + 32);
93       k -= 8 * sizeof(uint8_t);
94     } while (k != 0);
95 
96     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
97     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
98 
99     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
100     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
101     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
102 
103     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
104     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
105     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
106 
107     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
108     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
109 
110     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
111     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
112 
113     __m128i vout = _mm_packus_epi16(vacc01x0123, vacc01x0123);
114 
115     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
116 
117     if (nc >= 4) {
118       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
119       unaligned_store_u32(c1, (uint32_t) _mm_extract_epi32(vout, 1));
120 
121       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
122       c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
123 
124       a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
125       a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
126 
127       nc -= 4;
128     } else {
129       if (nc & 2) {
130         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
131         c0 += 2;
132         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
133         c1 += 2;
134         vout = _mm_srli_epi32(vout, 16);
135       }
136       if (nc & 1) {
137         *c0 = (uint8_t) _mm_extract_epi8(vout, 0);
138         *c1 = (uint8_t) _mm_extract_epi8(vout, 4);
139       }
140 
141       nc = 0;
142     }
143   } while (nc != 0);
144 }
145