1 // Auto-generated file. Do not edit!
2 // Template: src/qs8-igemm/c4-armsimd32.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2022 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_acle.h>
13
14 #include <xnnpack/intrinsics-polyfill.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/gemm.h>
17 #include <xnnpack/unaligned.h>
18
19
xnn_qs8_igemm_minmax_fp32_ukernel_2x2c4__armsimd32(size_t mr,size_t nc,size_t kc,size_t ks,const int8_t ** restrict a,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,size_t a_offset,const int8_t * zero,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_qs8_igemm_minmax_fp32_ukernel_2x2c4__armsimd32(
21 size_t mr,
22 size_t nc,
23 size_t kc,
24 size_t ks,
25 const int8_t**restrict a,
26 const void*restrict w,
27 int8_t*restrict c,
28 size_t cm_stride,
29 size_t cn_stride,
30 size_t a_offset,
31 const int8_t* zero,
32 const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
33 {
34 assert(mr != 0);
35 assert(mr <= 2);
36 assert(nc != 0);
37 assert(kc != 0);
38 assert(ks != 0);
39 assert(ks % (2 * sizeof(void*)) == 0);
40 assert(a != NULL);
41 assert(w != NULL);
42 assert(c != NULL);
43
44 kc = round_up_po2(kc, 4 * sizeof(int8_t));
45 int8_t* c0 = c;
46 int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
47 if XNN_UNPREDICTABLE(mr != 2) {
48 c1 = c0;
49 }
50
51 const float vscale = params->fp32_armsimd32.scale;
52 const float vmagic_bias = params->fp32_armsimd32.magic_bias;
53 do {
54 int32_t vacc0x0 = ((const int32_t*) w)[0];
55 int32_t vacc0x1 = ((const int32_t*) w)[1];
56 int32_t vacc1x0 = vacc0x0;
57 int32_t vacc1x1 = vacc0x1;
58 w = (const void*) ((const int32_t*) w + 2);
59
60 size_t p = ks;
61 do {
62 const int8_t* restrict a0 = a[0];
63 assert(a0 != NULL);
64 if XNN_UNPREDICTABLE(a0 != zero) {
65 a0 = (const int8_t*) ((uintptr_t) a0 + a_offset);
66 }
67 const int8_t* restrict a1 = a[1];
68 assert(a1 != NULL);
69 if XNN_UNPREDICTABLE(a1 != zero) {
70 a1 = (const int8_t*) ((uintptr_t) a1 + a_offset);
71 }
72 a += 2;
73
74 size_t k = kc;
75 do {
76 const int8x4_t va0 = (int8x4_t) unaligned_load_s32(a0); a0 += 4;
77 const int8x4_t va1 = (int8x4_t) unaligned_load_s32(a1); a1 += 4;
78
79 const int16x2_t va0c02 = __sxtb16(va0);
80 const int16x2_t va0c13 = __sxtb16(__ror(va0, 8));
81 const int16x2_t va1c02 = __sxtb16(va1);
82 const int16x2_t va1c13 = __sxtb16(__ror(va1, 8));
83
84 const int8x4_t vb0 = *((const int8x4_t*) w); w = (const int8_t*) w + 4;
85 const int16x2_t vb0c02 = __sxtb16(vb0);
86
87 vacc0x0 = __smlad(va0c02, vb0c02, vacc0x0);
88 vacc1x0 = __smlad(va1c02, vb0c02, vacc1x0);
89
90 const int16x2_t vb0c13 = __sxtb16(__ror(vb0, 8));
91 vacc0x0 = __smlad(va0c13, vb0c13, vacc0x0);
92 vacc1x0 = __smlad(va1c13, vb0c13, vacc1x0);
93 const int8x4_t vb1 = *((const int8x4_t*) w); w = (const int8_t*) w + 4;
94 const int16x2_t vb1c02 = __sxtb16(vb1);
95
96 vacc0x1 = __smlad(va0c02, vb1c02, vacc0x1);
97 vacc1x1 = __smlad(va1c02, vb1c02, vacc1x1);
98
99 const int16x2_t vb1c13 = __sxtb16(__ror(vb1, 8));
100 vacc0x1 = __smlad(va0c13, vb1c13, vacc0x1);
101 vacc1x1 = __smlad(va1c13, vb1c13, vacc1x1);
102
103 k -= 4 * sizeof(int8_t);
104 } while (k != 0);
105 p -= 2 * sizeof(void*);
106 } while (p != 0);
107
108 float vfpacc0x0 = (float) vacc0x0;
109 float vfpacc0x1 = (float) vacc0x1;
110 float vfpacc1x0 = (float) vacc1x0;
111 float vfpacc1x1 = (float) vacc1x1;
112
113 vfpacc0x0 *= vscale;
114 vfpacc0x1 *= vscale;
115 vfpacc1x0 *= vscale;
116 vfpacc1x1 *= vscale;
117
118 vfpacc0x0 += vmagic_bias;
119 vfpacc0x1 += vmagic_bias;
120 vfpacc1x0 += vmagic_bias;
121 vfpacc1x1 += vmagic_bias;
122
123 int32_t vout0x0 = (int32_t) float_as_uint32(vfpacc0x0);
124 int32_t vout0x1 = (int32_t) float_as_uint32(vfpacc0x1);
125 int32_t vout1x0 = (int32_t) float_as_uint32(vfpacc1x0);
126 int32_t vout1x1 = (int32_t) float_as_uint32(vfpacc1x1);
127
128 const int32_t vmagic_bias_less_zero_point = params->fp32_armsimd32.magic_bias_less_zero_point;
129 vout0x0 = __qsub(vout0x0, vmagic_bias_less_zero_point);
130 vout0x1 = __qsub(vout0x1, vmagic_bias_less_zero_point);
131 vout1x0 = __qsub(vout1x0, vmagic_bias_less_zero_point);
132 vout1x1 = __qsub(vout1x1, vmagic_bias_less_zero_point);
133
134 vout0x0 = __ssat(vout0x0, 8);
135 vout0x1 = __ssat(vout0x1, 8);
136 vout1x0 = __ssat(vout1x0, 8);
137 vout1x1 = __ssat(vout1x1, 8);
138
139 const uint32_t vout0 = (uint32_t) (uint8_t) vout0x0 | ((uint32_t) vout0x1 << 8);
140 const uint32_t vout1 = (uint32_t) (uint8_t) vout1x0 | ((uint32_t) vout1x1 << 8);
141
142 uint32_t vout = (uint32_t) (uint16_t) vout1 | (vout0 << 16);
143
144 const int8x4_t voutput_min = (int8x4_t) params->fp32_armsimd32.output_min;
145 __ssub8((int8x4_t) vout, voutput_min);
146 vout = (uint32_t) __sel((uint8x4_t) vout, (uint8x4_t) voutput_min);
147
148 const int8x4_t voutput_max = (int8x4_t) params->fp32_armsimd32.output_max;
149 __ssub8((int8x4_t) vout, voutput_max);
150 vout = (uint32_t) __sel((uint8x4_t) voutput_max, (uint8x4_t) vout);
151
152 if XNN_LIKELY(nc >= 2) {
153 unaligned_store_u16(c1, (uint16_t) vout);
154 vout >>= 16;
155 unaligned_store_u16(c0, (uint16_t) vout);
156
157 c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
158 c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
159
160 a = (const int8_t**restrict) ((uintptr_t) a - ks);
161 nc -= 2;
162 } else {
163 *c1 = (int8_t) vout;
164 vout >>= 16;
165 *c0 = (int8_t) vout;
166
167 nc = 0;
168 }
169 } while (nc != 0);
170 }
171