xref: /aosp_15_r20/external/XNNPACK/src/qs8-gemm/gen/2x4c2-xw-minmax-fp32-avx.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <smmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17 
18 
19 
xnn_qs8_gemm_xw_minmax_fp32_ukernel_2x4c2__avx(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_qs8_gemm_xw_minmax_fp32_ukernel_2x4c2__avx(
21     size_t mr,
22     size_t nc,
23     size_t kc,
24     const int8_t* restrict a,
25     size_t a_stride,
26     const void* restrict w,
27     int8_t* restrict c,
28     size_t cm_stride,
29     size_t cn_stride,
30     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
31 {
32   assert(mr != 0);
33   assert(mr <= 2);
34   assert(nc != 0);
35   assert(kc != 0);
36   assert(kc % sizeof(int8_t) == 0);
37   assert(a != NULL);
38   assert(w != NULL);
39   assert(c != NULL);
40 
41   kc = round_up_po2(kc, 2 * sizeof(int8_t));
42   const int8_t* a0 = a;
43   int8_t* c0 = c;
44   const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
45   int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
46   if XNN_UNPREDICTABLE(mr != 2) {
47     a1 = a0;
48     c1 = c0;
49   }
50 
51   do {
52     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
53     __m128i vacc1x0123 = vacc0x0123;
54     w = (const void*) ((const int32_t*) w + 4);
55 
56     size_t k = kc;
57     while (k >= 8 * sizeof(int8_t)) {
58       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
59       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
60       a0 += 8;
61       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
62       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
63       a1 += 8;
64 
65       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
66 
67       vacc0x0123 = _mm_add_epi32(vacc0x0123,
68         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
69       vacc1x0123 = _mm_add_epi32(vacc1x0123,
70         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
71       const __m128i vxb1 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 8));
72 
73       vacc0x0123 = _mm_add_epi32(vacc0x0123,
74         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
75       vacc1x0123 = _mm_add_epi32(vacc1x0123,
76         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
77       const __m128i vxb2 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 16));
78 
79       vacc0x0123 = _mm_add_epi32(vacc0x0123,
80         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
81       vacc1x0123 = _mm_add_epi32(vacc1x0123,
82         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
83       const __m128i vxb3 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 24));
84 
85       vacc0x0123 = _mm_add_epi32(vacc0x0123,
86         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
87       vacc1x0123 = _mm_add_epi32(vacc1x0123,
88         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
89 
90       w = (const void*) ((const int16_t*) w + 32);
91       k -= 8 * sizeof(int8_t);
92     }
93     if (k != 0) {
94       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
95       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
96       a0 = (const int8_t*) ((uintptr_t) a0 + k);
97       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
98       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
99       a1 = (const int8_t*) ((uintptr_t) a1 + k);
100 
101       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
102       w = (const void*) ((const int16_t*) w + 8);
103 
104       vacc0x0123 = _mm_add_epi32(vacc0x0123,
105         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
106       vacc1x0123 = _mm_add_epi32(vacc1x0123,
107         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
108 
109       if (k > 2 * sizeof(int8_t)) {
110         const __m128i vxb1 = _mm_load_si128((const __m128i*) w);
111         w = (const void*) ((const int16_t*) w + 8);
112 
113         vacc0x0123 = _mm_add_epi32(vacc0x0123,
114           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
115         vacc1x0123 = _mm_add_epi32(vacc1x0123,
116           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
117 
118         if (k > 4 * sizeof(int8_t)) {
119           const __m128i vxb2 = _mm_load_si128((const __m128i*) w);
120           w = (const void*) ((const int16_t*) w + 8);
121 
122           vacc0x0123 = _mm_add_epi32(vacc0x0123,
123             _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
124           vacc1x0123 = _mm_add_epi32(vacc1x0123,
125             _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
126         }
127       }
128     }
129 
130     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
131     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
132 
133     const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
134     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
135     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
136 
137     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
138     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
139     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
140 
141     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
142     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
143 
144     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
145     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
146 
147 
148     __m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
149 
150     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
151 
152     if (nc >= 4) {
153       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
154       unaligned_store_u32(c1, (uint32_t) _mm_extract_epi32(vout, 1));
155 
156       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
157       c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
158 
159       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
160       a1 = (const int8_t*) ((uintptr_t) a1 - kc);
161 
162       nc -= 4;
163     } else {
164       if (nc & 2) {
165         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
166         c0 += 2;
167         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
168         c1 += 2;
169         vout = _mm_srli_epi32(vout, 16);
170       }
171       if (nc & 1) {
172         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
173         *c1 = (int8_t) _mm_extract_epi8(vout, 4);
174       }
175 
176       nc = 0;
177     }
178   } while (nc != 0);
179 }
180