1 // Auto-generated file. Do not edit!
2 // Template: src/qs8-gemm/MRx4c2-sse.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <emmintrin.h>
13
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17
18
19
xnn_qc8_gemm_minmax_fp32_ukernel_3x4c2__sse2_ld64(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_qc8_gemm_minmax_fp32_ukernel_3x4c2__sse2_ld64(
21 size_t mr,
22 size_t nc,
23 size_t kc,
24 const int8_t* restrict a,
25 size_t a_stride,
26 const void* restrict w,
27 int8_t* restrict c,
28 size_t cm_stride,
29 size_t cn_stride,
30 const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
31 {
32 assert(mr != 0);
33 assert(mr <= 3);
34 assert(nc != 0);
35 assert(kc != 0);
36 assert(kc % sizeof(int8_t) == 0);
37 assert(a != NULL);
38 assert(w != NULL);
39 assert(c != NULL);
40
41 kc = round_up_po2(kc, 2 * sizeof(int8_t));
42 const int8_t* a0 = a;
43 int8_t* c0 = c;
44 const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
45 int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
46 if XNN_UNPREDICTABLE(mr < 2) {
47 a1 = a0;
48 c1 = c0;
49 }
50 const int8_t* a2 = (const int8_t*) ((uintptr_t) a1 + a_stride);
51 int8_t* c2 = (int8_t*) ((uintptr_t) c1 + cm_stride);
52 if XNN_UNPREDICTABLE(mr <= 2) {
53 a2 = a1;
54 c2 = c1;
55 }
56
57 do {
58 __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
59 __m128i vacc1x0123 = vacc0x0123;
60 __m128i vacc2x0123 = vacc0x0123;
61 w = (const void*) ((const int32_t*) w + 4);
62
63 size_t k = kc;
64 while (k >= 8 * sizeof(int8_t)) {
65 const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
66 const __m128i vxa0 = _mm_srai_epi16(_mm_unpacklo_epi8(va0, va0), 8);
67 a0 += 8;
68 const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
69 const __m128i vxa1 = _mm_srai_epi16(_mm_unpacklo_epi8(va1, va1), 8);
70 a1 += 8;
71 const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
72 const __m128i vxa2 = _mm_srai_epi16(_mm_unpacklo_epi8(va2, va2), 8);
73 a2 += 8;
74
75 const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
76 const __m128i vxb0 = _mm_srai_epi16(_mm_unpacklo_epi8(vb0, vb0), 8);
77
78 vacc0x0123 = _mm_add_epi32(vacc0x0123,
79 _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
80 vacc1x0123 = _mm_add_epi32(vacc1x0123,
81 _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
82 vacc2x0123 = _mm_add_epi32(vacc2x0123,
83 _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
84 const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const int8_t*) w + 8));
85 const __m128i vxb1 = _mm_srai_epi16(_mm_unpacklo_epi8(vb1, vb1), 8);
86
87 vacc0x0123 = _mm_add_epi32(vacc0x0123,
88 _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
89 vacc1x0123 = _mm_add_epi32(vacc1x0123,
90 _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
91 vacc2x0123 = _mm_add_epi32(vacc2x0123,
92 _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
93 const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const int8_t*) w + 16));
94 const __m128i vxb2 = _mm_srai_epi16(_mm_unpacklo_epi8(vb2, vb2), 8);
95
96 vacc0x0123 = _mm_add_epi32(vacc0x0123,
97 _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
98 vacc1x0123 = _mm_add_epi32(vacc1x0123,
99 _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
100 vacc2x0123 = _mm_add_epi32(vacc2x0123,
101 _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
102 const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const int8_t*) w + 24));
103 const __m128i vxb3 = _mm_srai_epi16(_mm_unpacklo_epi8(vb3, vb3), 8);
104
105 vacc0x0123 = _mm_add_epi32(vacc0x0123,
106 _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
107 vacc1x0123 = _mm_add_epi32(vacc1x0123,
108 _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
109 vacc2x0123 = _mm_add_epi32(vacc2x0123,
110 _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
111
112 w = (const void*) ((const int8_t*) w + 32);
113 k -= 8 * sizeof(int8_t);
114 }
115 if (k != 0) {
116 const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
117 const __m128i vxa0 = _mm_srai_epi16(_mm_unpacklo_epi8(va0, va0), 8);
118 a0 = (const int8_t*) ((uintptr_t) a0 + k);
119 const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
120 const __m128i vxa1 = _mm_srai_epi16(_mm_unpacklo_epi8(va1, va1), 8);
121 a1 = (const int8_t*) ((uintptr_t) a1 + k);
122 const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
123 const __m128i vxa2 = _mm_srai_epi16(_mm_unpacklo_epi8(va2, va2), 8);
124 a2 = (const int8_t*) ((uintptr_t) a2 + k);
125
126 const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
127 const __m128i vxb0 = _mm_srai_epi16(_mm_unpacklo_epi8(vb0, vb0), 8);
128 w = (const void*) ((const int8_t*) w + 8);
129
130 vacc0x0123 = _mm_add_epi32(vacc0x0123,
131 _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
132 vacc1x0123 = _mm_add_epi32(vacc1x0123,
133 _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
134 vacc2x0123 = _mm_add_epi32(vacc2x0123,
135 _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
136
137 if (k > 2 * sizeof(int8_t)) {
138 const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w);
139 const __m128i vxb1 = _mm_srai_epi16(_mm_unpacklo_epi8(vb1, vb1), 8);
140 w = (const void*) ((const int8_t*) w + 8);
141
142 vacc0x0123 = _mm_add_epi32(vacc0x0123,
143 _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
144 vacc1x0123 = _mm_add_epi32(vacc1x0123,
145 _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
146 vacc2x0123 = _mm_add_epi32(vacc2x0123,
147 _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
148
149 if (k > 4 * sizeof(int8_t)) {
150 const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w);
151 const __m128i vxb2 = _mm_srai_epi16(_mm_unpacklo_epi8(vb2, vb2), 8);
152 w = (const void*) ((const int8_t*) w + 8);
153
154 vacc0x0123 = _mm_add_epi32(vacc0x0123,
155 _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
156 vacc1x0123 = _mm_add_epi32(vacc1x0123,
157 _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
158 vacc2x0123 = _mm_add_epi32(vacc2x0123,
159 _mm_madd_epi16(_mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
160 }
161 }
162 }
163
164 __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
165 __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
166 __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
167
168 const __m128 vscale0123 = _mm_loadu_ps((const float*) w);
169 w = (const void*) ((const float*) w + 4);
170 vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale0123);
171 vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale0123);
172 vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale0123);
173
174 const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
175 vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
176 vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
177 vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
178
179 vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
180 vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
181 vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
182
183 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
184 __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
185 __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
186
187 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->fp32_sse2.output_min);
188 vacc01x0123 = _mm_max_epi16(vacc01x0123, voutput_min);
189 vacc22x0123 = _mm_max_epi16(vacc22x0123, voutput_min);
190
191 __m128i vout = _mm_packs_epi16(vacc01x0123, vacc22x0123);
192
193
194 if (nc >= 4) {
195 unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
196 vout = _mm_shuffle_epi32(vout, _MM_SHUFFLE(0, 3, 2, 1));
197 unaligned_store_u32(c1, (uint32_t) _mm_cvtsi128_si32(vout));
198 vout = _mm_shuffle_epi32(vout, _MM_SHUFFLE(0, 3, 2, 1));
199 unaligned_store_u32(c2, (uint32_t) _mm_cvtsi128_si32(vout));
200
201 c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
202 c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
203 c2 = (int8_t*) ((uintptr_t) c2 + cn_stride);
204
205 a0 = (const int8_t*) ((uintptr_t) a0 - kc);
206 a1 = (const int8_t*) ((uintptr_t) a1 - kc);
207 a2 = (const int8_t*) ((uintptr_t) a2 - kc);
208
209 nc -= 4;
210 } else {
211 if (nc & 2) {
212 unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
213 c0 += 2;
214 unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
215 c1 += 2;
216 unaligned_store_u16(c2, (uint16_t) _mm_extract_epi16(vout, 4));
217 c2 += 2;
218 vout = _mm_srli_epi32(vout, 16);
219 }
220 if (nc & 1) {
221 *c0 = (int8_t) _mm_cvtsi128_si32(vout);
222 *c1 = (int8_t) _mm_extract_epi16(vout, 2);
223 *c2 = (int8_t) _mm_extract_epi16(vout, 4);
224 }
225
226 nc = 0;
227 }
228 } while (nc != 0);
229 }
230