xref: /aosp_15_r20/external/XNNPACK/src/qc8-gemm/gen/2x4c2s4-minmax-fp32-xop-ld64.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2s4-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2022 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 #include <xnnpack/unaligned.h>
22 
23 
24 
xnn_qc8_gemm_minmax_fp32_ukernel_2x4c2s4__xop_ld64(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])25 void xnn_qc8_gemm_minmax_fp32_ukernel_2x4c2s4__xop_ld64(
26     size_t mr,
27     size_t nc,
28     size_t kc,
29     const int8_t* restrict a,
30     size_t a_stride,
31     const void* restrict w,
32     int8_t* restrict c,
33     size_t cm_stride,
34     size_t cn_stride,
35     const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
36 {
37   assert(mr != 0);
38   assert(mr <= 2);
39   assert(nc != 0);
40   assert(kc != 0);
41   assert(kc % sizeof(int8_t) == 0);
42   assert(a != NULL);
43   assert(w != NULL);
44   assert(c != NULL);
45 
46   kc = round_up_po2(kc, 8 * sizeof(int8_t));
47   const int8_t* a0 = a;
48   int8_t* c0 = c;
49   const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
50   int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
51   if XNN_UNPREDICTABLE(mr != 2) {
52     a1 = a0;
53     c1 = c0;
54   }
55 
56   do {
57     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
58     __m128i vacc1x0123 = vacc0x0123;
59     w = (const void*) ((const int32_t*) w + 4);
60 
61     size_t k = kc;
62     do {
63       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
64       __m128i vxa0 = _mm_cvtepi8_epi16(va0);
65       a0 += 8;
66       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
67       __m128i vxa1 = _mm_cvtepi8_epi16(va1);
68       a1 += 8;
69 
70       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
71       const __m128i vxb0 = _mm_cvtepi8_epi16(vb0);
72 
73       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb0, vacc0x0123);
74       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
75       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb0, vacc1x0123);
76       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
77       const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const int8_t*) w + 8));
78       const __m128i vxb1 = _mm_cvtepi8_epi16(vb1);
79 
80       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb1, vacc0x0123);
81       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
82       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb1, vacc1x0123);
83       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
84       const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const int8_t*) w + 16));
85       const __m128i vxb2 = _mm_cvtepi8_epi16(vb2);
86 
87       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb2, vacc0x0123);
88       vxa0 = _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 3, 2, 1));
89       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb2, vacc1x0123);
90       vxa1 = _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 3, 2, 1));
91       const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const int8_t*) w + 24));
92       const __m128i vxb3 = _mm_cvtepi8_epi16(vb3);
93 
94       vacc0x0123 = _mm_maddd_epi16(vxa0, vxb3, vacc0x0123);
95       vacc1x0123 = _mm_maddd_epi16(vxa1, vxb3, vacc1x0123);
96 
97       w = (const void*) ((const int8_t*) w + 32);
98       k -= 8 * sizeof(int8_t);
99     } while (k != 0);
100 
101     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
102     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
103 
104     const __m128 vscale0123 = _mm_loadu_ps((const float*) w);
105     w = (const void*) ((const float*) w + 4);
106     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale0123);
107     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale0123);
108 
109     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
110     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
111     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
112 
113     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
114     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
115 
116     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
117     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
118 
119 
120     __m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
121 
122     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
123 
124     if (nc >= 4) {
125       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
126       unaligned_store_u32(c1, (uint32_t) _mm_extract_epi32(vout, 1));
127 
128       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
129       c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
130 
131       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
132       a1 = (const int8_t*) ((uintptr_t) a1 - kc);
133 
134       nc -= 4;
135     } else {
136       if (nc & 2) {
137         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
138         c0 += 2;
139         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
140         c1 += 2;
141         vout = _mm_srli_epi32(vout, 16);
142       }
143       if (nc & 1) {
144         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
145         *c1 = (int8_t) _mm_extract_epi8(vout, 4);
146       }
147 
148       nc = 0;
149     }
150   } while (nc != 0);
151 }
152