xref: /aosp_15_r20/external/XNNPACK/src/qc8-gemm/gen/2x4c2-minmax-fp32-sse41-ld128.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <smmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 #include <xnnpack/unaligned.h>
17 
18 
19 
xnn_qc8_gemm_minmax_fp32_ukernel_2x4c2__sse41_ld128(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])20 void xnn_qc8_gemm_minmax_fp32_ukernel_2x4c2__sse41_ld128(
21     size_t mr,
22     size_t nc,
23     size_t kc,
24     const int8_t* restrict a,
25     size_t a_stride,
26     const void* restrict w,
27     int8_t* restrict c,
28     size_t cm_stride,
29     size_t cn_stride,
30     const union xnn_qc8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
31 {
32   assert(mr != 0);
33   assert(mr <= 2);
34   assert(nc != 0);
35   assert(kc != 0);
36   assert(kc % sizeof(int8_t) == 0);
37   assert(a != NULL);
38   assert(w != NULL);
39   assert(c != NULL);
40 
41   kc = round_up_po2(kc, 2 * sizeof(int8_t));
42   const int8_t* a0 = a;
43   int8_t* c0 = c;
44   const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
45   int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
46   if XNN_UNPREDICTABLE(mr != 2) {
47     a1 = a0;
48     c1 = c0;
49   }
50 
51   do {
52     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
53     __m128i vacc1x0123 = vacc0x0123;
54     w = (const void*) ((const int32_t*) w + 4);
55 
56     size_t k = kc;
57     while (k >= 8 * sizeof(int8_t)) {
58       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
59       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
60       a0 += 8;
61       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
62       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
63       a1 += 8;
64 
65       const __m128i vb01 = _mm_loadu_si128((const __m128i*) w);
66       const __m128i vxb0 = _mm_cvtepi8_epi16(vb01);
67       const __m128i vxb1 = _mm_srai_epi16(_mm_unpackhi_epi8(vb01, vb01), 8);
68 
69       vacc0x0123 = _mm_add_epi32(vacc0x0123,
70         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
71       vacc1x0123 = _mm_add_epi32(vacc1x0123,
72         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
73 
74       vacc0x0123 = _mm_add_epi32(vacc0x0123,
75         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
76       vacc1x0123 = _mm_add_epi32(vacc1x0123,
77         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
78       const __m128i vb23 = _mm_loadu_si128((const __m128i*) ((const int8_t*) w + 16));
79       const __m128i vxb2 = _mm_cvtepi8_epi16(vb23);
80       const __m128i vxb3 = _mm_srai_epi16(_mm_unpackhi_epi8(vb23, vb23), 8);
81 
82       vacc0x0123 = _mm_add_epi32(vacc0x0123,
83         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
84       vacc1x0123 = _mm_add_epi32(vacc1x0123,
85         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
86 
87       vacc0x0123 = _mm_add_epi32(vacc0x0123,
88         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
89       vacc1x0123 = _mm_add_epi32(vacc1x0123,
90         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
91 
92       w = (const void*) ((const int8_t*) w + 32);
93       k -= 8 * sizeof(int8_t);
94     }
95     if (k != 0) {
96       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
97       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
98       a0 = (const int8_t*) ((uintptr_t) a0 + k);
99       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
100       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
101       a1 = (const int8_t*) ((uintptr_t) a1 + k);
102 
103       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
104       const __m128i vxb0 = _mm_cvtepi8_epi16(vb0);
105       w = (const void*) ((const int8_t*) w + 8);
106 
107       vacc0x0123 = _mm_add_epi32(vacc0x0123,
108         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
109       vacc1x0123 = _mm_add_epi32(vacc1x0123,
110         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
111 
112       if (k > 2 * sizeof(int8_t)) {
113         const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w);
114         const __m128i vxb1 = _mm_cvtepi8_epi16(vb1);
115         w = (const void*) ((const int8_t*) w + 8);
116 
117         vacc0x0123 = _mm_add_epi32(vacc0x0123,
118           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
119         vacc1x0123 = _mm_add_epi32(vacc1x0123,
120           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
121 
122         if (k > 4 * sizeof(int8_t)) {
123           const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w);
124           const __m128i vxb2 = _mm_cvtepi8_epi16(vb2);
125           w = (const void*) ((const int8_t*) w + 8);
126 
127           vacc0x0123 = _mm_add_epi32(vacc0x0123,
128             _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
129           vacc1x0123 = _mm_add_epi32(vacc1x0123,
130             _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
131         }
132       }
133     }
134 
135     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
136     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
137 
138     const __m128 vscale0123 = _mm_loadu_ps((const float*) w);
139     w = (const void*) ((const float*) w + 4);
140     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale0123);
141     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale0123);
142 
143     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
144     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
145     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
146 
147     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
148     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
149 
150     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
151     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
152 
153 
154     __m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
155 
156     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
157 
158     if (nc >= 4) {
159       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
160       unaligned_store_u32(c1, (uint32_t) _mm_extract_epi32(vout, 1));
161 
162       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
163       c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
164 
165       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
166       a1 = (const int8_t*) ((uintptr_t) a1 - kc);
167 
168       nc -= 4;
169     } else {
170       if (nc & 2) {
171         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
172         c0 += 2;
173         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
174         c1 += 2;
175         vout = _mm_srli_epi32(vout, 16);
176       }
177       if (nc & 1) {
178         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
179         *c1 = (int8_t) _mm_extract_epi8(vout, 4);
180       }
181 
182       nc = 0;
183     }
184   } while (nc != 0);
185 }
186