xref: /aosp_15_r20/external/XNNPACK/src/math/sigmoid-f16-neonfp16arith-rr2-p3-recpe.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <arm_neon.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f16_sigmoid__neonfp16arith_rr2_p3_recpe(size_t n,const void * input,void * output)14 void xnn_math_f16_sigmoid__neonfp16arith_rr2_p3_recpe(
15     size_t n,
16     const void* input,
17     void* output)
18 {
19   assert(n % (8 * sizeof(__fp16)) == 0);
20 
21   // Large number such that ulp(magic bias) == 1 and magic bias === 15 mod 2**9.
22   const float16x8_t vmagic_bias = vmovq_n_f16(0x1.83Cp+10f);
23   const float16x8_t vminus_log2e = vmovq_n_f16(-0x1.714p+0f);
24   const float16x8_t vln2_hi = vmovq_n_f16(0x1.630p-1f);
25   const float16x8_t vln2_lo = vmovq_n_f16(-0x1.BD0p-13f);
26   // Coefficient of polynomial approximation
27   //   exp(-t) ~ 1 + t * (-1 + t * (c2 + t * c3))
28   // on [-log(2)/2, log(2)/2]
29   const float16x8_t vc3 = vmovq_n_f16(-0x1.558p-3f);
30   const float16x8_t vc2 = vmovq_n_f16(0x1.020p-1f);
31   const float16x8_t vone = vmovq_n_f16(1.0f);
32   // The largest z for which sigmoidh(-z) is normalized.
33   // This number is also the largest z for which exph(-z) is normalized.
34   const float16x8_t vdenorm_cutoff = vmovq_n_f16(-0x1.368p+3f);
35 
36   const __fp16* i = (const __fp16*) input;
37   __fp16* o = (__fp16*) output;
38   for (; n != 0; n -= 8 * sizeof(__fp16)) {
39     const float16x8_t vx = vld1q_f16(i); i += 8;
40 
41     // General structure of the algorithm:
42     //
43     //           / exp(x) / (1 + exp(x)) if x <= 0
44     //   f[x] :=
45     //           \ 1 - f[-x] if x >= 0
46     //
47     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
48     // then replace result with 1 - f[-z] if x >= 0.
49     const float16x8_t vz = vabsq_f16(vx);
50 
51     // Compute reduced argument n := round(-z / log(2)).
52     // We do it by adding a large number (magic bias) to the product z * (-1/log(2)), which cause rounding of the
53     // result to an integer, then subtracing the large number back. The first addition is combined with multiplication
54     // by -log2e into a single FMA instruction. The trick with adding large number is valid only within certain bounds
55     // (|-x / log(2)| <= 2**9, i.e. |z| <= 0x1.630p+8 = 355.0), but that is acceptable, because inputs outside
56     // of [-9.703125, 8.3125] (i.e. z outside [0, 9.703125]) underflow or saturate sigmoidh(x). We fixup the result for
57     // such inputs at the very end of the algorithm.
58     float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vminus_log2e);
59 
60     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
61     // -9.703125 <= -z <= 0.0, and -14 <= n <= 0 accordingly.
62     const float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
63 
64     // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
65     vn = vsubq_f16(vn, vmagic_bias);
66 
67     // Compute reduced argument t := z - n * log(2). Note that -t = -z - n * log(2).
68     // Use Cody-Waite range reduction method (note two constants to represent -log(2)) to improve accuracy.
69     float16x8_t vt = vfmaq_f16(vz, vn, vln2_hi);
70     vt = vfmaq_f16(vt, vn, vln2_lo);
71 
72     // Compute degree-3 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
73     //   P(t) = 1 + t * (-1 + t * (c2 + t * c3)) = -(1 - t * p)
74     float16x8_t vp = vfmaq_f16(vc2, vc3, vt);
75     vp = vfmsq_f16(vone, vp, vt);
76 
77     // Reconstruct the exp(-z) value:
78     //   e = s * (1 + t * (-1 + t * (c2 + t * c3))
79     //     = s * (1 - t * (-p))
80     //     = s - (t * s) * (-p)
81     vt = vmulq_f16(vt, vs);
82     float16x8_t ve = vfmsq_f16(vs, vp, vt);
83 
84     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
85     float16x8_t vd = vaddq_f16(ve, vone);
86 
87     // Compute approximate reciprocal of denominator.
88     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
89     // Thus the reciprocal of the denominator never overflows.
90     const float16x8_t vr = vrecpeq_f16(vd);
91 
92     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
93     float16x8_t vf = vmulq_f16(ve, vr);
94 
95     // For inputs below denormal cutoff, replace output with +0.0f.
96     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
97     vf = vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(vf), vcagtq_f16(vx, vdenorm_cutoff)));
98 
99     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
100     const uint16x8_t vm = vcltq_f16(vx, vmovq_n_f16(0.0f));
101     vf = vbslq_f16(vm, vf, vsubq_f16(vone, vf));
102 
103     vst1q_f16(o, vf); o += 8;
104   }
105 }
106