xref: /aosp_15_r20/external/XNNPACK/src/math/exp-f32-avx512f-rr2-lut32-p2-perm2-scalef.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 
9 #include <immintrin.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(size_t n,const float * input,float * output)14 void xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(
15     size_t n,
16     const float* input,
17     float* output)
18 {
19   assert(n % (16 * sizeof(float)) == 0);
20 
21   const __m512 vmagic_bias = _mm512_set1_ps(0x1.800000p18f);
22   const __m512 vlog2e  = _mm512_set1_ps(0x1.715476p0f);
23   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62e43p-1f);
24   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05c61p-29f);
25 
26   const __m512 vc1 = _mm512_set1_ps(0x1.0000F6p-0f);
27   const __m512 vc2 = _mm512_set1_ps(0x1.000000p-1f);
28   const __m512 vtable_hi = _mm512_set_ps(
29     0x1.F50766p+0f, 0x1.EA4AFAp+0f, 0x1.DFC974p+0f, 0x1.D5818Ep+0f,
30     0x1.CB720Ep+0f, 0x1.C199BEp+0f, 0x1.B7F770p+0f, 0x1.AE89FAp+0f,
31     0x1.A5503Cp+0f, 0x1.9C4918p+0f, 0x1.93737Cp+0f, 0x1.8ACE54p+0f,
32     0x1.82589Ap+0f, 0x1.7A1148p+0f, 0x1.71F75Ep+0f, 0x1.6A09E6p+0f);
33   const __m512 vtable_lo = _mm512_set_ps(
34     0x1.6247ECp+0f, 0x1.5AB07Ep+0f, 0x1.5342B6p+0f, 0x1.4BFDAEp+0f,
35     0x1.44E086p+0f, 0x1.3DEA64p+0f, 0x1.371A74p+0f, 0x1.306FE0p+0f,
36     0x1.29E9E0p+0f, 0x1.2387A6p+0f, 0x1.1D4874p+0f, 0x1.172B84p+0f,
37     0x1.11301Ep+0f, 0x1.0B5586p+0f, 0x1.059B0Ep+0f, 0x1.000000p+0f);
38 
39   for (; n != 0; n -= 16 * sizeof(float)) {
40     const __m512 vx = _mm512_loadu_ps(input);
41 
42     // Compute reduced argument n := round(x / log(2), 5).
43     // We do it by adding a large number (magic bias), which cause rounding of result to 5 fractional bits, then
44     // subtracing the large number back. The first addition is combined with multiplication by log2e into a single FMA
45     // instruction. The trick with adding large number is valid only within certain bounds (|x| <= 2**17), but that's
46     // ok, because inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result
47     // for such inputs at the very end of the algorithm.
48     __m512 vn = _mm512_fmadd_ps(vx, vlog2e, vmagic_bias);
49 
50     // Use the low 5 bits of n (as integer) for table lookup.
51     const __m512 vl = _mm512_permutex2var_ps(vtable_lo, _mm512_castps_si512(vn), vtable_hi);
52 
53     // Subtract the large number back to get final n := round(x / log(2), 5).
54     vn = _mm512_sub_ps(vn, vmagic_bias);
55 
56     // Compute reduced argument t := x - n * log(2).
57     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
58     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
59     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
60 
61     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/64, log(2)/64].
62     //   p = l * (1 + t * (c1 + t * c2))
63     //     = l + l * t * (c1 + t * c2)
64     __m512 vp = _mm512_fmadd_ps(vt, vc2, vc1);
65     vt = _mm512_mul_ps(vt, vl);
66     vp = _mm512_fmadd_ps(vt, vp, vl);
67 
68     // Reconstruct the final value as f = exp2(floor(n)) * p.
69     const __m512 vf = _mm512_scalef_ps(vp, vn);
70     _mm512_storeu_ps(output, vf);
71 
72     input += 16;
73     output += 16;
74   }
75 }
76