1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <algorithm>
7 #include <cfloat>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12
13 #include <benchmark/benchmark.h>
14 #include "bench/conv.h"
15 #include "bench/utils.h"
16
17 #include <xnnpack.h>
18 #include <xnnpack/aligned-allocator.h>
19 #include <xnnpack/common.h>
20 #include <xnnpack/gemm.h>
21 #include <xnnpack/im2col.h>
22 #include <xnnpack/math.h>
23 #include <xnnpack/microfnptr.h>
24 #include <xnnpack/microparams-init.h>
25 #include <xnnpack/pack.h>
26
27
Im2ColGEMMBenchmark(benchmark::State & state,xnn_f32_gemm_minmax_ukernel_function f32_gemm,uint32_t mr,uint32_t nr,uint32_t kr,uint32_t sr,xnn_init_f32_minmax_params_fn init_params,benchmark::utils::IsaCheckFunction isa_check=nullptr)28 static void Im2ColGEMMBenchmark(benchmark::State& state,
29 xnn_f32_gemm_minmax_ukernel_function f32_gemm,
30 uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr,
31 xnn_init_f32_minmax_params_fn init_params,
32 benchmark::utils::IsaCheckFunction isa_check = nullptr)
33 {
34 if (isa_check && !isa_check(state)) {
35 return;
36 }
37
38 const size_t input_height = state.range(0);
39 const size_t input_width = state.range(1);
40 const size_t kernel_height = state.range(2);
41 const size_t kernel_width = state.range(3);
42 const size_t kernel_size = kernel_height * kernel_width;
43 const size_t padding_height = state.range(4);
44 const size_t padding_width = state.range(5);
45 const size_t subsampling = state.range(6);
46 const size_t dilation = state.range(7);
47 const size_t group_input_channels = state.range(8);
48 const size_t group_output_channels = state.range(9);
49
50 std::random_device random_device;
51 auto rng = std::mt19937(random_device());
52 auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
53
54 const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1;
55 const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1;
56 const size_t padding_left = padding_width / 2;
57 const size_t padding_top = padding_height / 2;
58 const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1;
59 const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1;
60 const size_t output_size = output_height * output_width;
61
62 const size_t nc_stride = benchmark::utils::RoundUp<size_t>(group_output_channels, nr);
63 const size_t kc_stride = benchmark::utils::RoundUp<size_t>(group_input_channels, kr);
64
65 std::vector<float> a(input_height * input_width * group_input_channels + XNN_EXTRA_BYTES / sizeof(float));
66 std::generate(a.begin(), a.end(), std::ref(f32rng));
67 std::vector<float> k(group_output_channels * kernel_height * kernel_width * group_input_channels);
68 std::generate(k.begin(), k.end(), std::ref(f32rng));
69 std::vector<float> b(group_output_channels);
70 std::generate(b.begin(), b.end(), std::ref(f32rng));
71
72 const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride;
73 const size_t c_elements = output_size * group_output_channels;
74 const size_t num_buffers = 1 +
75 benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
76 sizeof(float) * (w_elements + c_elements));
77
78 std::vector<float, AlignedAllocator<float, 64>> w(w_elements * num_buffers);
79 std::fill(w.begin(), w.end(), 0.0f);
80 xnn_pack_f32_gemm_goi_w(1 /* groups */, group_output_channels, group_input_channels * kernel_size,
81 nr, kr, sr, k.data(), b.data(), w.data(), 0, nullptr);
82 for (size_t n = 1; n < num_buffers; n++) {
83 std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements);
84 }
85
86 std::vector<float> im2col_buffer(output_size * group_input_channels * kernel_size * group_output_channels);
87
88 std::vector<float> c(c_elements * num_buffers);
89 std::fill(c.begin(), c.end(), std::nanf(""));
90
91 xnn_f32_minmax_params params;
92 init_params(¶ms,
93 -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
94
95 size_t buffer_index = 0;
96 for (auto _ : state) {
97 state.PauseTiming();
98 benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
99 buffer_index = (buffer_index + 1) % num_buffers;
100 state.ResumeTiming();
101
102 const float* inputData = a.data();
103 if (kernel_size != 1 || subsampling != 1) {
104 xnn_im2col_conv2d(
105 output_height, output_width,
106 kernel_height, kernel_width,
107 subsampling, subsampling,
108 dilation, dilation,
109 input_width, padding_top, padding_left,
110 group_input_channels * sizeof(float) /* input channels */,
111 group_input_channels * sizeof(float) /* input stride */,
112 a.data(), im2col_buffer.data());
113 inputData = im2col_buffer.data();
114 }
115
116 for (uint32_t m = 0; m < output_size; m += mr) {
117 const uint32_t mb = min(output_size - m, mr);
118 for (uint32_t n = 0; n < group_output_channels; n += nr) {
119 const uint32_t nb = min(group_output_channels - n, nr);
120 f32_gemm(
121 mb, nb, kernel_size * group_input_channels * sizeof(float),
122 inputData + m * kernel_size * group_input_channels, kernel_size * group_input_channels * sizeof(float),
123 w.data() + (buffer_index * nc_stride + n) * (kernel_size * kc_stride + 1),
124 c.data() + (buffer_index * output_size + m) * group_output_channels + n, group_output_channels * sizeof(float), nr * sizeof(float),
125 ¶ms);
126 }
127 }
128 }
129
130 const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
131 if (cpu_frequency != 0) {
132 state.counters["cpufreq"] = cpu_frequency;
133 }
134
135 state.counters["FLOPS"] = benchmark::Counter(
136 uint64_t(state.iterations()) * 2 *
137 output_height * output_width *
138 group_input_channels * group_output_channels *
139 kernel_height * kernel_width,
140 benchmark::Counter::kIsRate);
141 }
142
143
144 #if XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY
f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a75(benchmark::State & state,const char * net)145 static void f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a75(benchmark::State& state, const char* net) {
146 Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_4x8__aarch64_neonfma_prfm_cortex_a75, 4, 8, 1, 1,
147 xnn_init_f32_minmax_scalar_params);
148 }
149
BENCHMARK_CONV(f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a75)150 BENCHMARK_CONV(f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a75)
151 #endif // XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY
152
153
154 static void f32_gemm_2x4__scalar(benchmark::State& state, const char* net) {
155 Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_2x4__scalar, 2, 4, 1, 1,
156 xnn_init_f32_minmax_scalar_params);
157 }
158
f32_gemm_4x4__scalar(benchmark::State & state,const char * net)159 static void f32_gemm_4x4__scalar(benchmark::State& state, const char* net) {
160 Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_4x4__scalar, 4, 4, 1, 1,
161 xnn_init_f32_minmax_scalar_params);
162 }
163
164 BENCHMARK_CONV(f32_gemm_2x4__scalar)
165 BENCHMARK_CONV(f32_gemm_4x4__scalar)
166
167
168 #ifndef XNNPACK_BENCHMARK_NO_MAIN
169 BENCHMARK_MAIN();
170 #endif
171