xref: /aosp_15_r20/external/XNNPACK/bench/f32-conv-hwc2chw.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <cfloat>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12 
13 #include <cpuinfo.h>
14 
15 #include <benchmark/benchmark.h>
16 #include "bench/dconv.h"
17 #include "bench/utils.h"
18 
19 #include <xnnpack.h>
20 #include <xnnpack/aligned-allocator.h>
21 #include <xnnpack/common.h>
22 #include <xnnpack/conv.h>
23 #include <xnnpack/microfnptr.h>
24 #include <xnnpack/microparams-init.h>
25 #include <xnnpack/pack.h>
26 
27 
f32_conv_hwc2chw(benchmark::State & state,xnn_f32_conv_hwc2chw_ukernel_function conv,uint32_t output_channels_tile,benchmark::utils::IsaCheckFunction isa_check=nullptr)28 static void f32_conv_hwc2chw(benchmark::State& state,
29   xnn_f32_conv_hwc2chw_ukernel_function conv,
30   uint32_t output_channels_tile,
31   benchmark::utils::IsaCheckFunction isa_check = nullptr)
32 {
33   if (isa_check && !isa_check(state)) {
34     return;
35   }
36 
37   const size_t input_height = state.range(0);
38   const size_t input_width = state.range(1);
39   const size_t output_channels = state.range(2);
40 
41   std::random_device random_device;
42   auto rng = std::mt19937(random_device());
43   auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
44 
45   const size_t input_channels = 3;
46   const size_t kernel_size = 3;
47   const size_t padding = 1;
48   const size_t subsampling = 2;
49 
50   const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1;
51   const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1;
52 
53   std::vector<float> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float));
54   std::generate(input.begin(), input.end(), std::ref(f32rng));
55   std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels);
56   std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
57   std::vector<float> bias(output_channels);
58   std::generate(bias.begin(), bias.end(), std::ref(f32rng));
59 
60   std::vector<float, AlignedAllocator<float, 64>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float));
61 
62   const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) *
63     benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile);
64   const size_t output_elements = output_height * output_width * output_channels;
65   const size_t num_buffers = 1 +
66     benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
67       sizeof(float) * (weights_elements + output_elements));
68 
69   std::vector<float, AlignedAllocator<float, 64>> packed_weights(weights_elements * num_buffers);
70   std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
71   xnn_pack_f32_dconv_oki_w(
72     output_channels, input_channels, output_channels_tile,
73     kernel_size /* kernel height */, kernel_size /* kernel width */,
74     kernel.data(), bias.data(), packed_weights.data(), NULL);
75   for (size_t n = 1; n < num_buffers; n++) {
76     std::copy(packed_weights.cbegin(),
77       packed_weights.cbegin() + weights_elements,
78       packed_weights.begin() + n * weights_elements);
79   }
80 
81   std::vector<float> output(output_elements * num_buffers);
82   std::fill(output.begin(), output.end(), std::nanf(""));
83 
84   xnn_f32_minmax_params params;
85   xnn_init_f32_minmax_params(&params, -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
86 
87   size_t buffer_index = 0;
88   for (auto _ : state) {
89     state.PauseTiming();
90     benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float));
91     buffer_index = (buffer_index + 1) % num_buffers;
92     state.ResumeTiming();
93 
94     conv(
95       input_height, input_width,
96       0 /* output_y_start */, output_height /* output_y_end */,
97       input.data(), zero.data(),
98       packed_weights.data() + buffer_index * weights_elements,
99       output.data() + buffer_index * output_elements,
100       padding, output_channels,
101       output_channels * output_width * sizeof(float),
102       output_channels * sizeof(float),
103       &params);
104   }
105 
106   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
107   if (cpu_frequency != 0) {
108     state.counters["cpufreq"] = cpu_frequency;
109   }
110 
111   state.counters["FLOPS"] = benchmark::Counter(
112     uint64_t(state.iterations()) * 2 *
113       output_height * output_width *
114       input_channels * output_channels *
115       kernel_size * kernel_size,
116     benchmark::Counter::kIsRate);
117 }
118 
119 #if XNN_ARCH_ARM64
f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2(benchmark::State & state,const char * net)120   static void f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2(benchmark::State& state, const char* net) {
121     f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__neonfma_2x2, 4, benchmark::utils::CheckNEONFMA);
122   }
123 
124   BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2);
125 #endif
126 
127 #if XNN_ARCH_X86 || XNN_ARCH_X86_64
f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1(benchmark::State & state,const char * net)128   static void f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1(benchmark::State& state, const char* net) {
129     f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1, 4);
130   }
131 
132   BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1);
133 
f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2(benchmark::State & state,const char * net)134   static void f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2(benchmark::State& state, const char* net) {
135     f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_2x2, 4);
136   }
137 
138   BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2);
139 #endif
140 
141 #if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2(benchmark::State & state,const char * net)142   static void f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2(benchmark::State& state, const char* net) {
143     f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__wasmsimd_2x2, 4);
144   }
145 
146   BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2);
147 #endif  // XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
148 
f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1(benchmark::State & state,const char * net)149 static void f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1(benchmark::State& state, const char* net) {
150   f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1, 4);
151 }
152 
153 BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1);
154 
155 #ifndef XNNPACK_BENCHMARK_NO_MAIN
156 BENCHMARK_MAIN();
157 #endif
158