1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <algorithm>
7 #include <cfloat>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12
13 #include <cpuinfo.h>
14
15 #include <benchmark/benchmark.h>
16 #include "bench/dconv.h"
17 #include "bench/utils.h"
18
19 #include <xnnpack.h>
20 #include <xnnpack/aligned-allocator.h>
21 #include <xnnpack/common.h>
22 #include <xnnpack/conv.h>
23 #include <xnnpack/microfnptr.h>
24 #include <xnnpack/microparams-init.h>
25 #include <xnnpack/pack.h>
26
27
f32_conv_hwc2chw(benchmark::State & state,xnn_f32_conv_hwc2chw_ukernel_function conv,uint32_t output_channels_tile,benchmark::utils::IsaCheckFunction isa_check=nullptr)28 static void f32_conv_hwc2chw(benchmark::State& state,
29 xnn_f32_conv_hwc2chw_ukernel_function conv,
30 uint32_t output_channels_tile,
31 benchmark::utils::IsaCheckFunction isa_check = nullptr)
32 {
33 if (isa_check && !isa_check(state)) {
34 return;
35 }
36
37 const size_t input_height = state.range(0);
38 const size_t input_width = state.range(1);
39 const size_t output_channels = state.range(2);
40
41 std::random_device random_device;
42 auto rng = std::mt19937(random_device());
43 auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
44
45 const size_t input_channels = 3;
46 const size_t kernel_size = 3;
47 const size_t padding = 1;
48 const size_t subsampling = 2;
49
50 const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1;
51 const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1;
52
53 std::vector<float> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float));
54 std::generate(input.begin(), input.end(), std::ref(f32rng));
55 std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels);
56 std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
57 std::vector<float> bias(output_channels);
58 std::generate(bias.begin(), bias.end(), std::ref(f32rng));
59
60 std::vector<float, AlignedAllocator<float, 64>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float));
61
62 const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) *
63 benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile);
64 const size_t output_elements = output_height * output_width * output_channels;
65 const size_t num_buffers = 1 +
66 benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
67 sizeof(float) * (weights_elements + output_elements));
68
69 std::vector<float, AlignedAllocator<float, 64>> packed_weights(weights_elements * num_buffers);
70 std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
71 xnn_pack_f32_dconv_oki_w(
72 output_channels, input_channels, output_channels_tile,
73 kernel_size /* kernel height */, kernel_size /* kernel width */,
74 kernel.data(), bias.data(), packed_weights.data(), NULL);
75 for (size_t n = 1; n < num_buffers; n++) {
76 std::copy(packed_weights.cbegin(),
77 packed_weights.cbegin() + weights_elements,
78 packed_weights.begin() + n * weights_elements);
79 }
80
81 std::vector<float> output(output_elements * num_buffers);
82 std::fill(output.begin(), output.end(), std::nanf(""));
83
84 xnn_f32_minmax_params params;
85 xnn_init_f32_minmax_params(¶ms, -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
86
87 size_t buffer_index = 0;
88 for (auto _ : state) {
89 state.PauseTiming();
90 benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float));
91 buffer_index = (buffer_index + 1) % num_buffers;
92 state.ResumeTiming();
93
94 conv(
95 input_height, input_width,
96 0 /* output_y_start */, output_height /* output_y_end */,
97 input.data(), zero.data(),
98 packed_weights.data() + buffer_index * weights_elements,
99 output.data() + buffer_index * output_elements,
100 padding, output_channels,
101 output_channels * output_width * sizeof(float),
102 output_channels * sizeof(float),
103 ¶ms);
104 }
105
106 const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
107 if (cpu_frequency != 0) {
108 state.counters["cpufreq"] = cpu_frequency;
109 }
110
111 state.counters["FLOPS"] = benchmark::Counter(
112 uint64_t(state.iterations()) * 2 *
113 output_height * output_width *
114 input_channels * output_channels *
115 kernel_size * kernel_size,
116 benchmark::Counter::kIsRate);
117 }
118
119 #if XNN_ARCH_ARM64
f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2(benchmark::State & state,const char * net)120 static void f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2(benchmark::State& state, const char* net) {
121 f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__neonfma_2x2, 4, benchmark::utils::CheckNEONFMA);
122 }
123
124 BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__neonfma_2x2);
125 #endif
126
127 #if XNN_ARCH_X86 || XNN_ARCH_X86_64
f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1(benchmark::State & state,const char * net)128 static void f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1(benchmark::State& state, const char* net) {
129 f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_1x1, 4);
130 }
131
132 BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__sse_1x1);
133
f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2(benchmark::State & state,const char * net)134 static void f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2(benchmark::State& state, const char* net) {
135 f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__sse_2x2, 4);
136 }
137
138 BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__sse_2x2);
139 #endif
140
141 #if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2(benchmark::State & state,const char * net)142 static void f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2(benchmark::State& state, const char* net) {
143 f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__wasmsimd_2x2, 4);
144 }
145
146 BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__wasmsimd_2x2);
147 #endif // XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
148
f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1(benchmark::State & state,const char * net)149 static void f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1(benchmark::State& state, const char* net) {
150 f32_conv_hwc2chw(state, xnn_f32_conv_hwc2chw_ukernel_3x3s2p1c3x4__scalar_1x1, 4);
151 }
152
153 BENCHMARK_DCONV(f32_conv_hwc2chw_3x3s2p1c3x4__scalar_1x1);
154
155 #ifndef XNNPACK_BENCHMARK_NO_MAIN
156 BENCHMARK_MAIN();
157 #endif
158