xref: /aosp_15_r20/external/XNNPACK/bench/f32-conv-hwc.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <cfloat>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12 
13 #include <benchmark/benchmark.h>
14 #include "bench/dconv.h"
15 #include "bench/utils.h"
16 
17 #include <xnnpack.h>
18 #include <xnnpack/aligned-allocator.h>
19 #include <xnnpack/common.h>
20 #include <xnnpack/conv.h>
21 #include <xnnpack/microfnptr.h>
22 #include <xnnpack/microparams-init.h>
23 #include <xnnpack/pack.h>
24 
25 
f32_conv_hwc(benchmark::State & state,xnn_f32_conv_hwc_ukernel_function conv,uint32_t output_channels_tile,benchmark::utils::IsaCheckFunction isa_check=nullptr)26 static void f32_conv_hwc(benchmark::State& state,
27   xnn_f32_conv_hwc_ukernel_function conv,
28   uint32_t output_channels_tile,
29   benchmark::utils::IsaCheckFunction isa_check = nullptr)
30 {
31   if (isa_check && !isa_check(state)) {
32     return;
33   }
34 
35   const size_t input_height = state.range(0);
36   const size_t input_width = state.range(1);
37   const size_t output_channels = state.range(2);
38 
39   std::random_device random_device;
40   auto rng = std::mt19937(random_device());
41   auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
42 
43   const size_t input_channels = 3;
44   const size_t kernel_size = 3;
45   const size_t padding = 1;
46   const size_t subsampling = 2;
47 
48   const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1;
49   const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1;
50 
51   std::vector<float> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float));
52   std::generate(input.begin(), input.end(), std::ref(f32rng));
53   std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels);
54   std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
55   std::vector<float> bias(output_channels);
56   std::generate(bias.begin(), bias.end(), std::ref(f32rng));
57 
58   std::vector<float, AlignedAllocator<float, 64>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float));
59 
60   const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) *
61     benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile);
62   const size_t output_elements = output_height * output_width * output_channels;
63   const size_t num_buffers = 1 +
64     benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
65       sizeof(float) * (weights_elements + output_elements));
66 
67   std::vector<float, AlignedAllocator<float, 64>> packed_weights(weights_elements * num_buffers);
68   std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
69   xnn_pack_f32_dconv_oki_w(
70     output_channels, input_channels, output_channels_tile,
71     kernel_size /* kernel height */, kernel_size /* kernel width */,
72     kernel.data(), bias.data(), packed_weights.data(), nullptr);
73   for (size_t n = 1; n < num_buffers; n++) {
74     std::copy(packed_weights.cbegin(),
75       packed_weights.cbegin() + weights_elements,
76       packed_weights.begin() + n * weights_elements);
77   }
78 
79   std::vector<float> output(output_elements * num_buffers);
80   std::fill(output.begin(), output.end(), std::nanf(""));
81 
82   xnn_f32_minmax_params params;
83   xnn_init_f32_minmax_params(
84     &params, -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
85 
86   size_t buffer_index = 0;
87   for (auto _ : state) {
88     state.PauseTiming();
89     benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float));
90     buffer_index = (buffer_index + 1) % num_buffers;
91     state.ResumeTiming();
92 
93     conv(
94       input_height, input_width,
95       0 /* output_y_start */, output_height /* output_y_end */,
96       input.data(), zero.data(),
97       packed_weights.data() + buffer_index * weights_elements,
98       output.data() + buffer_index * output_elements,
99       padding, output_channels,
100       output_channels * output_width * sizeof(float),
101       output_channels * sizeof(float),
102       &params);
103   }
104 
105   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
106   if (cpu_frequency != 0) {
107     state.counters["cpufreq"] = cpu_frequency;
108   }
109 
110   state.counters["FLOPS"] = benchmark::Counter(
111     uint64_t(state.iterations()) * 2 *
112       output_height * output_width *
113       input_channels * output_channels *
114       kernel_size * kernel_size,
115     benchmark::Counter::kIsRate);
116 }
117 
118 #if XNN_ARCH_ARM64
f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1(benchmark::State & state,const char * net)119   static void f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1(benchmark::State& state, const char* net) {
120     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neonfma_2x1, 8, benchmark::utils::CheckNEONFMA);
121   }
f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1(benchmark::State & state,const char * net)122   static void f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1(benchmark::State& state, const char* net) {
123     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1, 4, benchmark::utils::CheckNEONFMA);
124   }
f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2(benchmark::State & state,const char * net)125   static void f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2(benchmark::State& state, const char* net) {
126     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neonfma_2x2, 8, benchmark::utils::CheckNEONFMA);
127   }
f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2(benchmark::State & state,const char * net)128   static void f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2(benchmark::State& state, const char* net) {
129     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x2, 4, benchmark::utils::CheckNEONFMA);
130   }
131 
132   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1);
133   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1);
134   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2);
135   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2);
136 #endif  // XNN_ARCH_ARM64
137 
138 #if XNN_ARCH_ARM || XNN_ARCH_ARM64
f32_conv_hwc_3x3s2p1c3x8__neon_2x1(benchmark::State & state,const char * net)139   static void f32_conv_hwc_3x3s2p1c3x8__neon_2x1(benchmark::State& state, const char* net) {
140     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x1, 8, benchmark::utils::CheckNEON);
141   }
f32_conv_hwc_3x3s2p1c3x4__neon_2x1(benchmark::State & state,const char * net)142   static void f32_conv_hwc_3x3s2p1c3x4__neon_2x1(benchmark::State& state, const char* net) {
143     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x1, 4, benchmark::utils::CheckNEON);
144   }
f32_conv_hwc_3x3s2p1c3x8__neon_2x2(benchmark::State & state,const char * net)145   static void f32_conv_hwc_3x3s2p1c3x8__neon_2x2(benchmark::State& state, const char* net) {
146     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x2, 8, benchmark::utils::CheckNEON);
147   }
f32_conv_hwc_3x3s2p1c3x4__neon_2x2(benchmark::State & state,const char * net)148   static void f32_conv_hwc_3x3s2p1c3x4__neon_2x2(benchmark::State& state, const char* net) {
149     f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x2, 4, benchmark::utils::CheckNEON);
150   }
151 
152   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x1);
153   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x1);
154   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x2);
155   BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x2);
156 #endif  // XNN_ARCH_ARM || XNN_ARCH_ARM64
157 
158 #ifndef XNNPACK_BENCHMARK_NO_MAIN
159 BENCHMARK_MAIN();
160 #endif
161