1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <algorithm>
7 #include <cfloat>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12
13 #include <benchmark/benchmark.h>
14 #include "bench/dconv.h"
15 #include "bench/utils.h"
16
17 #include <xnnpack.h>
18 #include <xnnpack/aligned-allocator.h>
19 #include <xnnpack/common.h>
20 #include <xnnpack/conv.h>
21 #include <xnnpack/microfnptr.h>
22 #include <xnnpack/microparams-init.h>
23 #include <xnnpack/pack.h>
24
25
f32_conv_hwc(benchmark::State & state,xnn_f32_conv_hwc_ukernel_function conv,uint32_t output_channels_tile,benchmark::utils::IsaCheckFunction isa_check=nullptr)26 static void f32_conv_hwc(benchmark::State& state,
27 xnn_f32_conv_hwc_ukernel_function conv,
28 uint32_t output_channels_tile,
29 benchmark::utils::IsaCheckFunction isa_check = nullptr)
30 {
31 if (isa_check && !isa_check(state)) {
32 return;
33 }
34
35 const size_t input_height = state.range(0);
36 const size_t input_width = state.range(1);
37 const size_t output_channels = state.range(2);
38
39 std::random_device random_device;
40 auto rng = std::mt19937(random_device());
41 auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
42
43 const size_t input_channels = 3;
44 const size_t kernel_size = 3;
45 const size_t padding = 1;
46 const size_t subsampling = 2;
47
48 const size_t output_height = (input_height + 2 * padding - kernel_size) / subsampling + 1;
49 const size_t output_width = (input_width + 2 * padding - kernel_size) / subsampling + 1;
50
51 std::vector<float> input(input_height * input_width * input_channels + XNN_EXTRA_BYTES / sizeof(float));
52 std::generate(input.begin(), input.end(), std::ref(f32rng));
53 std::vector<float> kernel(output_channels * kernel_size * kernel_size * input_channels);
54 std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
55 std::vector<float> bias(output_channels);
56 std::generate(bias.begin(), bias.end(), std::ref(f32rng));
57
58 std::vector<float, AlignedAllocator<float, 64>> zero(input_channels * input_width + XNN_EXTRA_BYTES / sizeof(float));
59
60 const size_t weights_elements = (kernel_size * kernel_size * input_channels + 1) *
61 benchmark::utils::RoundUp<size_t>(output_channels, output_channels_tile);
62 const size_t output_elements = output_height * output_width * output_channels;
63 const size_t num_buffers = 1 +
64 benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
65 sizeof(float) * (weights_elements + output_elements));
66
67 std::vector<float, AlignedAllocator<float, 64>> packed_weights(weights_elements * num_buffers);
68 std::fill(packed_weights.begin(), packed_weights.end(), 0.0f);
69 xnn_pack_f32_dconv_oki_w(
70 output_channels, input_channels, output_channels_tile,
71 kernel_size /* kernel height */, kernel_size /* kernel width */,
72 kernel.data(), bias.data(), packed_weights.data(), nullptr);
73 for (size_t n = 1; n < num_buffers; n++) {
74 std::copy(packed_weights.cbegin(),
75 packed_weights.cbegin() + weights_elements,
76 packed_weights.begin() + n * weights_elements);
77 }
78
79 std::vector<float> output(output_elements * num_buffers);
80 std::fill(output.begin(), output.end(), std::nanf(""));
81
82 xnn_f32_minmax_params params;
83 xnn_init_f32_minmax_params(
84 ¶ms, -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
85
86 size_t buffer_index = 0;
87 for (auto _ : state) {
88 state.PauseTiming();
89 benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float));
90 buffer_index = (buffer_index + 1) % num_buffers;
91 state.ResumeTiming();
92
93 conv(
94 input_height, input_width,
95 0 /* output_y_start */, output_height /* output_y_end */,
96 input.data(), zero.data(),
97 packed_weights.data() + buffer_index * weights_elements,
98 output.data() + buffer_index * output_elements,
99 padding, output_channels,
100 output_channels * output_width * sizeof(float),
101 output_channels * sizeof(float),
102 ¶ms);
103 }
104
105 const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
106 if (cpu_frequency != 0) {
107 state.counters["cpufreq"] = cpu_frequency;
108 }
109
110 state.counters["FLOPS"] = benchmark::Counter(
111 uint64_t(state.iterations()) * 2 *
112 output_height * output_width *
113 input_channels * output_channels *
114 kernel_size * kernel_size,
115 benchmark::Counter::kIsRate);
116 }
117
118 #if XNN_ARCH_ARM64
f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1(benchmark::State & state,const char * net)119 static void f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1(benchmark::State& state, const char* net) {
120 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neonfma_2x1, 8, benchmark::utils::CheckNEONFMA);
121 }
f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1(benchmark::State & state,const char * net)122 static void f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1(benchmark::State& state, const char* net) {
123 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x1, 4, benchmark::utils::CheckNEONFMA);
124 }
f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2(benchmark::State & state,const char * net)125 static void f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2(benchmark::State& state, const char* net) {
126 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neonfma_2x2, 8, benchmark::utils::CheckNEONFMA);
127 }
f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2(benchmark::State & state,const char * net)128 static void f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2(benchmark::State& state, const char* net) {
129 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neonfma_2x2, 4, benchmark::utils::CheckNEONFMA);
130 }
131
132 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neonfma_2x1);
133 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neonfma_2x1);
134 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neonfma_2x2);
135 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neonfma_2x2);
136 #endif // XNN_ARCH_ARM64
137
138 #if XNN_ARCH_ARM || XNN_ARCH_ARM64
f32_conv_hwc_3x3s2p1c3x8__neon_2x1(benchmark::State & state,const char * net)139 static void f32_conv_hwc_3x3s2p1c3x8__neon_2x1(benchmark::State& state, const char* net) {
140 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x1, 8, benchmark::utils::CheckNEON);
141 }
f32_conv_hwc_3x3s2p1c3x4__neon_2x1(benchmark::State & state,const char * net)142 static void f32_conv_hwc_3x3s2p1c3x4__neon_2x1(benchmark::State& state, const char* net) {
143 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x1, 4, benchmark::utils::CheckNEON);
144 }
f32_conv_hwc_3x3s2p1c3x8__neon_2x2(benchmark::State & state,const char * net)145 static void f32_conv_hwc_3x3s2p1c3x8__neon_2x2(benchmark::State& state, const char* net) {
146 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x8__neon_2x2, 8, benchmark::utils::CheckNEON);
147 }
f32_conv_hwc_3x3s2p1c3x4__neon_2x2(benchmark::State & state,const char * net)148 static void f32_conv_hwc_3x3s2p1c3x4__neon_2x2(benchmark::State& state, const char* net) {
149 f32_conv_hwc(state, xnn_f32_conv_hwc_ukernel_3x3s2p1c3x4__neon_2x2, 4, benchmark::utils::CheckNEON);
150 }
151
152 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x1);
153 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x1);
154 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x8__neon_2x2);
155 BENCHMARK_DCONV(f32_conv_hwc_3x3s2p1c3x4__neon_2x2);
156 #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
157
158 #ifndef XNNPACK_BENCHMARK_NO_MAIN
159 BENCHMARK_MAIN();
160 #endif
161