xref: /aosp_15_r20/external/XNNPACK/bench/convert.cc (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2021 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <array>
8 #include <cfloat>
9 #include <cmath>
10 #include <functional>
11 #include <random>
12 #include <vector>
13 
14 #include <xnnpack.h>
15 
16 #include <benchmark/benchmark.h>
17 #include <fp16/fp16.h>
18 #include "bench/utils.h"
19 #ifdef BENCHMARK_TENSORFLOW_LITE
20 #include "flatbuffers/include/flatbuffers/flatbuffers.h"
21 #include "tensorflow/lite/interpreter.h"
22 #include "tensorflow/lite/kernels/register.h"
23 #include "tensorflow/lite/model.h"
24 #include "tensorflow/lite/schema/schema_generated.h"
25 #include "tensorflow/lite/version.h"
26 #endif  // BENCHMARK_TENSORFLOW_LITE
27 
28 
xnnpack_convert_f16_f32(benchmark::State & state)29 void xnnpack_convert_f16_f32(benchmark::State& state) {
30   const size_t batch_size = state.range(0);
31 
32   std::random_device random_device;
33   auto rng = std::mt19937(random_device());
34   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
35   auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
36 
37   std::vector<uint16_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint16_t));
38   std::generate(input.begin(), input.end(), std::ref(f16rng));
39   std::vector<float> output(batch_size);
40   std::fill(output.begin(), output.end(), std::nanf(""));
41 
42   xnn_status status = xnn_initialize(nullptr /* allocator */);
43   if (status != xnn_status_success) {
44     state.SkipWithError("failed to initialize XNNPACK");
45     return;
46   }
47 
48   xnn_operator_t convert_op = nullptr;
49   status = xnn_create_convert_nc_f16_f32(
50     1 /* channels */, 1 /* input stride */, 1 /* output stride */,
51     0 /* flags */, &convert_op);
52   if (status != xnn_status_success) {
53     state.SkipWithError("failed to create F16->F32 Convert operator");
54     return;
55   }
56 
57   status = xnn_setup_convert_nc_f16_f32(
58     convert_op, batch_size,
59     input.data(), output.data(),
60     nullptr /* thread pool */);
61   if (status != xnn_status_success) {
62     state.SkipWithError("failed to setup F16->F32 Convert operator");
63     return;
64   }
65 
66   for (auto _ : state) {
67     status = xnn_run_operator(convert_op, nullptr /* thread pool */);
68     if (status != xnn_status_success) {
69       state.SkipWithError("failed to run F16->F32 Convert operator");
70       return;
71     }
72   }
73 
74   status = xnn_delete_operator(convert_op);
75   if (status != xnn_status_success) {
76     state.SkipWithError("failed to delete F16->F32 Convert operator");
77     return;
78   }
79   convert_op = nullptr;
80 
81   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
82   if (cpu_frequency != 0) {
83     state.counters["cpufreq"] = cpu_frequency;
84   }
85 
86   state.counters["elements"] =
87     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
88 
89   const size_t bytes_per_iteration = batch_size * (sizeof(uint16_t) + sizeof(float));
90   state.counters["bytes"] =
91     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
92 }
93 
xnnpack_convert_f32_f16(benchmark::State & state)94 void xnnpack_convert_f32_f16(benchmark::State& state) {
95   const size_t batch_size = state.range(0);
96 
97   std::random_device random_device;
98   auto rng = std::mt19937(random_device());
99   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
100 
101   std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float));
102   std::generate(input.begin(), input.end(), std::ref(f32rng));
103   std::vector<uint16_t> output(batch_size);
104   std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
105 
106   xnn_status status = xnn_initialize(nullptr /* allocator */);
107   if (status != xnn_status_success) {
108     state.SkipWithError("failed to initialize XNNPACK");
109     return;
110   }
111 
112   xnn_operator_t convert_op = nullptr;
113   status = xnn_create_convert_nc_f32_f16(
114     1 /* channels */, 1 /* input stride */, 1 /* output stride */,
115     0 /* flags */, &convert_op);
116   if (status != xnn_status_success) {
117     state.SkipWithError("failed to create F32->F16 Convert operator");
118     return;
119   }
120 
121   status = xnn_setup_convert_nc_f32_f16(
122     convert_op, batch_size,
123     input.data(), output.data(),
124     nullptr /* thread pool */);
125   if (status != xnn_status_success) {
126     state.SkipWithError("failed to setup F32->F16 Convert operator");
127     return;
128   }
129 
130   for (auto _ : state) {
131     status = xnn_run_operator(convert_op, nullptr /* thread pool */);
132     if (status != xnn_status_success) {
133       state.SkipWithError("failed to run F32->F16 Convert operator");
134       return;
135     }
136   }
137 
138   status = xnn_delete_operator(convert_op);
139   if (status != xnn_status_success) {
140     state.SkipWithError("failed to delete F32->F16 Convert operator");
141     return;
142   }
143   convert_op = nullptr;
144 
145   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
146   if (cpu_frequency != 0) {
147     state.counters["cpufreq"] = cpu_frequency;
148   }
149 
150   state.counters["elements"] =
151     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
152 
153   const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint16_t));
154   state.counters["bytes"] =
155     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
156 }
157 
xnnpack_convert_f32_qs8(benchmark::State & state)158 void xnnpack_convert_f32_qs8(benchmark::State& state) {
159   const size_t batch_size = state.range(0);
160 
161   std::random_device random_device;
162   auto rng = std::mt19937(random_device());
163   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
164 
165   std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float));
166   std::generate(input.begin(), input.end(), std::ref(f32rng));
167   std::vector<int8_t> output(batch_size);
168   std::fill(output.begin(), output.end(), 0);
169 
170   xnn_status status = xnn_initialize(nullptr /* allocator */);
171   if (status != xnn_status_success) {
172     state.SkipWithError("failed to initialize XNNPACK");
173     return;
174   }
175 
176   xnn_operator_t convert_op = nullptr;
177   status = xnn_create_convert_nc_f32_qs8(
178     1 /* channels */, 1 /* input stride */, 1 /* output stride */,
179     1.0f / 128.0f /* scale */, 1 /* zero point */,
180     std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(),
181     0 /* flags */, &convert_op);
182   if (status != xnn_status_success) {
183     state.SkipWithError("failed to create F32->QS8 Convert operator");
184     return;
185   }
186 
187   status = xnn_setup_convert_nc_f32_qs8(
188     convert_op, batch_size,
189     input.data(), output.data(),
190     nullptr /* thread pool */);
191   if (status != xnn_status_success) {
192     state.SkipWithError("failed to setup F32->QS8 Convert operator");
193     return;
194   }
195 
196   for (auto _ : state) {
197     status = xnn_run_operator(convert_op, nullptr /* thread pool */);
198     if (status != xnn_status_success) {
199       state.SkipWithError("failed to run F32->QS8 Convert operator");
200       return;
201     }
202   }
203 
204   status = xnn_delete_operator(convert_op);
205   if (status != xnn_status_success) {
206     state.SkipWithError("failed to delete F32->QS8 Convert operator");
207     return;
208   }
209   convert_op = nullptr;
210 
211   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
212   if (cpu_frequency != 0) {
213     state.counters["cpufreq"] = cpu_frequency;
214   }
215 
216   state.counters["elements"] =
217     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
218 
219   const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(int8_t));
220   state.counters["bytes"] =
221     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
222 }
223 
xnnpack_convert_f32_qu8(benchmark::State & state)224 void xnnpack_convert_f32_qu8(benchmark::State& state) {
225   const size_t batch_size = state.range(0);
226 
227   std::random_device random_device;
228   auto rng = std::mt19937(random_device());
229   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
230 
231   std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float));
232   std::generate(input.begin(), input.end(), std::ref(f32rng));
233   std::vector<uint8_t> output(batch_size);
234   std::fill(output.begin(), output.end(), 0);
235 
236   xnn_status status = xnn_initialize(nullptr /* allocator */);
237   if (status != xnn_status_success) {
238     state.SkipWithError("failed to initialize XNNPACK");
239     return;
240   }
241 
242   xnn_operator_t convert_op = nullptr;
243   status = xnn_create_convert_nc_f32_qu8(
244     1 /* channels */, 1 /* input stride */, 1 /* output stride */,
245     1.0f / 128.0f /* scale */, 127 /* zero point */,
246     std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max(),
247     0 /* flags */, &convert_op);
248   if (status != xnn_status_success) {
249     state.SkipWithError("failed to create F32->QU8 Convert operator");
250     return;
251   }
252 
253   status = xnn_setup_convert_nc_f32_qu8(
254     convert_op, batch_size,
255     input.data(), output.data(),
256     nullptr /* thread pool */);
257   if (status != xnn_status_success) {
258     state.SkipWithError("failed to setup F32->QU8 Convert operator");
259     return;
260   }
261 
262   for (auto _ : state) {
263     status = xnn_run_operator(convert_op, nullptr /* thread pool */);
264     if (status != xnn_status_success) {
265       state.SkipWithError("failed to run F32->QU8 Convert operator");
266       return;
267     }
268   }
269 
270   status = xnn_delete_operator(convert_op);
271   if (status != xnn_status_success) {
272     state.SkipWithError("failed to delete F32->QU8 Convert operator");
273     return;
274   }
275   convert_op = nullptr;
276 
277   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
278   if (cpu_frequency != 0) {
279     state.counters["cpufreq"] = cpu_frequency;
280   }
281 
282   state.counters["elements"] =
283     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
284 
285   const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint8_t));
286   state.counters["bytes"] =
287     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
288 }
289 
xnnpack_convert_qs8_f32(benchmark::State & state)290 void xnnpack_convert_qs8_f32(benchmark::State& state) {
291   const size_t batch_size = state.range(0);
292 
293   std::random_device random_device;
294   auto rng = std::mt19937(random_device());
295   auto i8rng = std::bind(
296     std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
297     std::ref(rng));
298 
299   std::vector<int8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(int8_t));
300   std::generate(input.begin(), input.end(), std::ref(i8rng));
301   std::vector<float> output(batch_size);
302   std::fill(output.begin(), output.end(), std::nanf(""));
303 
304   xnn_status status = xnn_initialize(nullptr /* allocator */);
305   if (status != xnn_status_success) {
306     state.SkipWithError("failed to initialize XNNPACK");
307     return;
308   }
309 
310   xnn_operator_t convert_op = nullptr;
311   status = xnn_create_convert_nc_qs8_f32(
312     1 /* channels */, 1 /* input stride */, 1 /* output stride */,
313     1.0f / 255.0f /* scale */, -128 /* zero point */,
314     0 /* flags */, &convert_op);
315   if (status != xnn_status_success) {
316     state.SkipWithError("failed to create QS8->F32 Convert operator");
317     return;
318   }
319 
320   status = xnn_setup_convert_nc_qs8_f32(
321     convert_op, batch_size,
322     input.data(), output.data(),
323     nullptr /* thread pool */);
324   if (status != xnn_status_success) {
325     state.SkipWithError("failed to setup QS8->F32 Convert operator");
326     return;
327   }
328 
329   for (auto _ : state) {
330     status = xnn_run_operator(convert_op, nullptr /* thread pool */);
331     if (status != xnn_status_success) {
332       state.SkipWithError("failed to run QS8->F32 Convert operator");
333       return;
334     }
335   }
336 
337   status = xnn_delete_operator(convert_op);
338   if (status != xnn_status_success) {
339     state.SkipWithError("failed to delete QS8->F32 Convert operator");
340     return;
341   }
342   convert_op = nullptr;
343 
344   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
345   if (cpu_frequency != 0) {
346     state.counters["cpufreq"] = cpu_frequency;
347   }
348 
349   state.counters["elements"] =
350     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
351 
352   const size_t bytes_per_iteration = batch_size * (sizeof(int8_t) + sizeof(float));
353   state.counters["bytes"] =
354     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
355 }
356 
xnnpack_convert_qu8_f32(benchmark::State & state)357 void xnnpack_convert_qu8_f32(benchmark::State& state) {
358   const size_t batch_size = state.range(0);
359 
360   std::random_device random_device;
361   auto rng = std::mt19937(random_device());
362   auto u8rng = std::bind(
363     std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()),
364     std::ref(rng));
365 
366   std::vector<uint8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint8_t));
367   std::generate(input.begin(), input.end(), std::ref(u8rng));
368   std::vector<float> output(batch_size);
369   std::fill(output.begin(), output.end(), std::nanf(""));
370 
371   xnn_status status = xnn_initialize(nullptr /* allocator */);
372   if (status != xnn_status_success) {
373     state.SkipWithError("failed to initialize XNNPACK");
374     return;
375   }
376 
377   xnn_operator_t convert_op = nullptr;
378   status = xnn_create_convert_nc_qu8_f32(
379     1 /* channels */, 1 /* input stride */, 1 /* output stride */,
380     1.0f / 128.0f /* scale */, 128 /* zero point */,
381     0 /* flags */, &convert_op);
382   if (status != xnn_status_success) {
383     state.SkipWithError("failed to create QU8->F32 Convert operator");
384     return;
385   }
386 
387   status = xnn_setup_convert_nc_qu8_f32(
388     convert_op, batch_size,
389     input.data(), output.data(),
390     nullptr /* thread pool */);
391   if (status != xnn_status_success) {
392     state.SkipWithError("failed to setup QU8->F32 Convert operator");
393     return;
394   }
395 
396   for (auto _ : state) {
397     status = xnn_run_operator(convert_op, nullptr /* thread pool */);
398     if (status != xnn_status_success) {
399       state.SkipWithError("failed to run QU8->F32 Convert operator");
400       return;
401     }
402   }
403 
404   status = xnn_delete_operator(convert_op);
405   if (status != xnn_status_success) {
406     state.SkipWithError("failed to delete QU8->F32 Convert operator");
407     return;
408   }
409   convert_op = nullptr;
410 
411   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
412   if (cpu_frequency != 0) {
413     state.counters["cpufreq"] = cpu_frequency;
414   }
415 
416   state.counters["elements"] =
417     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
418 
419   const size_t bytes_per_iteration = batch_size * (sizeof(uint8_t) + sizeof(float));
420   state.counters["bytes"] =
421     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
422 }
423 
424 #ifdef BENCHMARK_TENSORFLOW_LITE
tflite_convert_f16_f32(benchmark::State & state)425 void tflite_convert_f16_f32(benchmark::State& state) {
426   const size_t batch_size = state.range(0);
427 
428   std::random_device random_device;
429   auto rng = std::mt19937(random_device());
430   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
431   auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
432 
433   flatbuffers::FlatBufferBuilder builder;
434   flatbuffers::Offset<tflite::OperatorCode> operator_code =
435       CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE);
436 
437   std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
438     tflite::CreateBuffer(builder, builder.CreateVector({})),
439   }};
440 
441   const std::array<int32_t, 1> shape{{
442     static_cast<int32_t>(batch_size)
443   }};
444 
445   const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
446     tflite::CreateTensor(builder,
447                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
448                          tflite::TensorType_FLOAT16),
449     tflite::CreateTensor(builder,
450                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
451                          tflite::TensorType_FLOAT32)
452   }};
453 
454   const std::array<int32_t, 1> op_inputs{{0}};
455   const std::array<int32_t, 1> op_outputs{{1}};
456   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder,
457       0 /* opcode_index */,
458       builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
459       builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
460 
461   const std::array<int32_t, 1> graph_inputs{{0}};
462   const std::array<int32_t, 1> graph_outputs{{1}};
463   flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
464       builder,
465       builder.CreateVector(tensors.data(), tensors.size()),
466       builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
467       builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
468       builder.CreateVector(&op, 1));
469 
470   flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model");
471 
472   flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
473       TFLITE_SCHEMA_VERSION,
474       builder.CreateVector(&operator_code, 1),
475       builder.CreateVector(&subgraph, 1),
476       description,
477       builder.CreateVector(buffers.data(), buffers.size()));
478 
479   builder.Finish(model_buffer);
480 
481   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
482   tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
483   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
484   std::unique_ptr<tflite::Interpreter> interpreter;
485   if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
486     state.SkipWithError("failed to create TFLite interpreter");
487     return;
488   }
489   interpreter->SetNumThreads(1);
490 
491   if (interpreter->AllocateTensors() != kTfLiteOk) {
492     state.SkipWithError("failed to allocate tensors");
493     return;
494   }
495 
496   uint16_t* input_data = reinterpret_cast<uint16_t*>(interpreter->tensor(0)->data.data);
497   std::generate(input_data, input_data + batch_size, std::ref(f16rng));
498 
499   for (auto _ : state) {
500     if (interpreter->Invoke() != kTfLiteOk) {
501       state.SkipWithError("failed to invoke TFLite interpreter");
502       return;
503     }
504   }
505 
506   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
507   if (cpu_frequency != 0) {
508     state.counters["cpufreq"] = cpu_frequency;
509   }
510 
511   state.counters["elements"] =
512     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
513 
514   const size_t bytes_per_iteration = batch_size * (sizeof(uint16_t) + sizeof(float));
515   state.counters["bytes"] =
516     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
517 
518   interpreter.reset();
519 }
520 
tflite_convert_f32_qs8(benchmark::State & state)521 void tflite_convert_f32_qs8(benchmark::State& state) {
522   const size_t batch_size = state.range(0);
523 
524   std::random_device random_device;
525   auto rng = std::mt19937(random_device());
526   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
527 
528   flatbuffers::FlatBufferBuilder builder;
529   flatbuffers::Offset<tflite::OperatorCode> operator_code =
530       CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE);
531 
532   std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
533     tflite::CreateBuffer(builder, builder.CreateVector({})),
534   }};
535 
536   const std::array<int32_t, 1> shape{{
537     static_cast<int32_t>(batch_size)
538   }};
539 
540   const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
541     tflite::CreateTensor(builder,
542                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
543                          tflite::TensorType_FLOAT32),
544     tflite::CreateTensor(builder,
545                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
546                          tflite::TensorType_INT8, 0 /* buffer */, 0 /* name */,
547                          tflite::CreateQuantizationParameters(builder,
548                            0 /*min*/, 0 /*max*/,
549                            builder.CreateVector<float>({1.0f / 128.0f /* scale */}),
550                            builder.CreateVector<int64_t>({1 /* zero point */})))
551   }};
552 
553   const std::array<int32_t, 1> op_inputs{{0}};
554   const std::array<int32_t, 1> op_outputs{{1}};
555   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder,
556       0 /* opcode_index */,
557       builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
558       builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
559 
560   const std::array<int32_t, 1> graph_inputs{{0}};
561   const std::array<int32_t, 1> graph_outputs{{1}};
562   flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
563       builder,
564       builder.CreateVector(tensors.data(), tensors.size()),
565       builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
566       builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
567       builder.CreateVector(&op, 1));
568 
569   flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model");
570 
571   flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
572       TFLITE_SCHEMA_VERSION,
573       builder.CreateVector(&operator_code, 1),
574       builder.CreateVector(&subgraph, 1),
575       description,
576       builder.CreateVector(buffers.data(), buffers.size()));
577 
578   builder.Finish(model_buffer);
579 
580   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
581   tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
582   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
583   std::unique_ptr<tflite::Interpreter> interpreter;
584   if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
585     state.SkipWithError("failed to create TFLite interpreter");
586     return;
587   }
588   interpreter->SetNumThreads(1);
589 
590   if (interpreter->AllocateTensors() != kTfLiteOk) {
591     state.SkipWithError("failed to allocate tensors");
592     return;
593   }
594 
595   std::generate(
596     interpreter->typed_tensor<float>(0),
597     interpreter->typed_tensor<float>(0) + batch_size,
598     std::ref(f32rng));
599 
600   for (auto _ : state) {
601     if (interpreter->Invoke() != kTfLiteOk) {
602       state.SkipWithError("failed to invoke TFLite interpreter");
603       return;
604     }
605   }
606 
607   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
608   if (cpu_frequency != 0) {
609     state.counters["cpufreq"] = cpu_frequency;
610   }
611 
612   state.counters["elements"] =
613     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
614 
615   const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(int8_t));
616   state.counters["bytes"] =
617     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
618 
619   interpreter.reset();
620 }
621 
tflite_convert_f32_qu8(benchmark::State & state)622 void tflite_convert_f32_qu8(benchmark::State& state) {
623   const size_t batch_size = state.range(0);
624 
625   std::random_device random_device;
626   auto rng = std::mt19937(random_device());
627   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng));
628 
629   flatbuffers::FlatBufferBuilder builder;
630   flatbuffers::Offset<tflite::OperatorCode> operator_code =
631       CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE);
632 
633   std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
634     tflite::CreateBuffer(builder, builder.CreateVector({})),
635   }};
636 
637   const std::array<int32_t, 1> shape{{
638     static_cast<int32_t>(batch_size)
639   }};
640 
641   const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
642     tflite::CreateTensor(builder,
643                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
644                          tflite::TensorType_FLOAT32),
645     tflite::CreateTensor(builder,
646                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
647                          tflite::TensorType_UINT8, 0 /* buffer */, 0 /* name */,
648                          tflite::CreateQuantizationParameters(builder,
649                            0 /*min*/, 0 /*max*/,
650                            builder.CreateVector<float>({1.0f / 128.0f /* scale */}),
651                            builder.CreateVector<int64_t>({127 /* zero point */})))
652   }};
653 
654   const std::array<int32_t, 1> op_inputs{{0}};
655   const std::array<int32_t, 1> op_outputs{{1}};
656   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder,
657       0 /* opcode_index */,
658       builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
659       builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
660 
661   const std::array<int32_t, 1> graph_inputs{{0}};
662   const std::array<int32_t, 1> graph_outputs{{1}};
663   flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
664       builder,
665       builder.CreateVector(tensors.data(), tensors.size()),
666       builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
667       builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
668       builder.CreateVector(&op, 1));
669 
670   flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model");
671 
672   flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
673       TFLITE_SCHEMA_VERSION,
674       builder.CreateVector(&operator_code, 1),
675       builder.CreateVector(&subgraph, 1),
676       description,
677       builder.CreateVector(buffers.data(), buffers.size()));
678 
679   builder.Finish(model_buffer);
680 
681   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
682   tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
683   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
684   std::unique_ptr<tflite::Interpreter> interpreter;
685   if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
686     state.SkipWithError("failed to create TFLite interpreter");
687     return;
688   }
689   interpreter->SetNumThreads(1);
690 
691   if (interpreter->AllocateTensors() != kTfLiteOk) {
692     state.SkipWithError("failed to allocate tensors");
693     return;
694   }
695 
696   std::generate(
697     interpreter->typed_tensor<float>(0),
698     interpreter->typed_tensor<float>(0) + batch_size,
699     std::ref(f32rng));
700 
701   for (auto _ : state) {
702     if (interpreter->Invoke() != kTfLiteOk) {
703       state.SkipWithError("failed to invoke TFLite interpreter");
704       return;
705     }
706   }
707 
708   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
709   if (cpu_frequency != 0) {
710     state.counters["cpufreq"] = cpu_frequency;
711   }
712 
713   state.counters["elements"] =
714     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
715 
716   const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint8_t));
717   state.counters["bytes"] =
718     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
719 
720   interpreter.reset();
721 }
722 
tflite_convert_qs8_f32(benchmark::State & state)723 void tflite_convert_qs8_f32(benchmark::State& state) {
724   const size_t batch_size = state.range(0);
725 
726   std::random_device random_device;
727   auto rng = std::mt19937(random_device());
728   auto i8rng = std::bind(
729     std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
730     std::ref(rng));
731 
732   flatbuffers::FlatBufferBuilder builder;
733   flatbuffers::Offset<tflite::OperatorCode> operator_code =
734       CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE);
735 
736   std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
737     tflite::CreateBuffer(builder, builder.CreateVector({})),
738   }};
739 
740   const std::array<int32_t, 1> shape{{
741     static_cast<int32_t>(batch_size)
742   }};
743 
744   const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
745     tflite::CreateTensor(builder,
746                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
747                          tflite::TensorType_INT8, 0 /* buffer */, 0 /* name */,
748                          tflite::CreateQuantizationParameters(builder,
749                            0 /*min*/, 0 /*max*/,
750                            builder.CreateVector<float>({1.0f / 255.0f /* scale */}),
751                            builder.CreateVector<int64_t>({-128 /* zero point */}))),
752     tflite::CreateTensor(builder,
753                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
754                          tflite::TensorType_FLOAT32)
755   }};
756 
757   const std::array<int32_t, 1> op_inputs{{0}};
758   const std::array<int32_t, 1> op_outputs{{1}};
759   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder,
760       0 /* opcode_index */,
761       builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
762       builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
763 
764   const std::array<int32_t, 1> graph_inputs{{0}};
765   const std::array<int32_t, 1> graph_outputs{{1}};
766   flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
767       builder,
768       builder.CreateVector(tensors.data(), tensors.size()),
769       builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
770       builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
771       builder.CreateVector(&op, 1));
772 
773   flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model");
774 
775   flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
776       TFLITE_SCHEMA_VERSION,
777       builder.CreateVector(&operator_code, 1),
778       builder.CreateVector(&subgraph, 1),
779       description,
780       builder.CreateVector(buffers.data(), buffers.size()));
781 
782   builder.Finish(model_buffer);
783 
784   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
785   tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
786   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
787   std::unique_ptr<tflite::Interpreter> interpreter;
788   if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
789     state.SkipWithError("failed to create TFLite interpreter");
790     return;
791   }
792   interpreter->SetNumThreads(1);
793 
794   if (interpreter->AllocateTensors() != kTfLiteOk) {
795     state.SkipWithError("failed to allocate tensors");
796     return;
797   }
798 
799   std::generate(
800     interpreter->typed_tensor<int8_t>(0),
801     interpreter->typed_tensor<int8_t>(0) + batch_size,
802     std::ref(i8rng));
803 
804   for (auto _ : state) {
805     if (interpreter->Invoke() != kTfLiteOk) {
806       state.SkipWithError("failed to invoke TFLite interpreter");
807       return;
808     }
809   }
810 
811   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
812   if (cpu_frequency != 0) {
813     state.counters["cpufreq"] = cpu_frequency;
814   }
815 
816   state.counters["elements"] =
817     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
818 
819   const size_t bytes_per_iteration = batch_size * (sizeof(int8_t) + sizeof(float));
820   state.counters["bytes"] =
821     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
822 
823   interpreter.reset();
824 }
825 
tflite_convert_qu8_f32(benchmark::State & state)826 void tflite_convert_qu8_f32(benchmark::State& state) {
827   const size_t batch_size = state.range(0);
828 
829   std::random_device random_device;
830   auto rng = std::mt19937(random_device());
831   auto u8rng = std::bind(
832     std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()),
833     std::ref(rng));
834 
835   flatbuffers::FlatBufferBuilder builder;
836   flatbuffers::Offset<tflite::OperatorCode> operator_code =
837       CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE);
838 
839   std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
840     tflite::CreateBuffer(builder, builder.CreateVector({})),
841   }};
842 
843   const std::array<int32_t, 1> shape{{
844     static_cast<int32_t>(batch_size)
845   }};
846 
847   const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
848     tflite::CreateTensor(builder,
849                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
850                          tflite::TensorType_UINT8, 0 /* buffer */, 0 /* name */,
851                          tflite::CreateQuantizationParameters(builder,
852                            0 /*min*/, 0 /*max*/,
853                            builder.CreateVector<float>({1.0f / 128.0f /* scale */}),
854                            builder.CreateVector<int64_t>({128 /* zero point */}))),
855     tflite::CreateTensor(builder,
856                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
857                          tflite::TensorType_FLOAT32)
858   }};
859 
860   const std::array<int32_t, 1> op_inputs{{0}};
861   const std::array<int32_t, 1> op_outputs{{1}};
862   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder,
863       0 /* opcode_index */,
864       builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
865       builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
866 
867   const std::array<int32_t, 1> graph_inputs{{0}};
868   const std::array<int32_t, 1> graph_outputs{{1}};
869   flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
870       builder,
871       builder.CreateVector(tensors.data(), tensors.size()),
872       builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
873       builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
874       builder.CreateVector(&op, 1));
875 
876   flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model");
877 
878   flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
879       TFLITE_SCHEMA_VERSION,
880       builder.CreateVector(&operator_code, 1),
881       builder.CreateVector(&subgraph, 1),
882       description,
883       builder.CreateVector(buffers.data(), buffers.size()));
884 
885   builder.Finish(model_buffer);
886 
887   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
888   tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
889   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
890   std::unique_ptr<tflite::Interpreter> interpreter;
891   if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
892     state.SkipWithError("failed to create TFLite interpreter");
893     return;
894   }
895   interpreter->SetNumThreads(1);
896 
897   if (interpreter->AllocateTensors() != kTfLiteOk) {
898     state.SkipWithError("failed to allocate tensors");
899     return;
900   }
901 
902   std::generate(
903     interpreter->typed_tensor<uint8_t>(0),
904     interpreter->typed_tensor<uint8_t>(0) + batch_size,
905     std::ref(u8rng));
906 
907   for (auto _ : state) {
908     if (interpreter->Invoke() != kTfLiteOk) {
909       state.SkipWithError("failed to invoke TFLite interpreter");
910       return;
911     }
912   }
913 
914   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
915   if (cpu_frequency != 0) {
916     state.counters["cpufreq"] = cpu_frequency;
917   }
918 
919   state.counters["elements"] =
920     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
921 
922   const size_t bytes_per_iteration = batch_size * (sizeof(uint8_t) + sizeof(float));
923   state.counters["bytes"] =
924     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
925 
926   interpreter.reset();
927 }
928 #endif  // BENCHMARK_TENSORFLOW_LITE
929 
930 BENCHMARK(xnnpack_convert_f16_f32)
931   ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, float>)
932   ->UseRealTime();
933 BENCHMARK(xnnpack_convert_f32_f16)
934   ->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint16_t>)
935   ->UseRealTime();
936 BENCHMARK(xnnpack_convert_f32_qs8)
937   ->Apply(benchmark::utils::UnaryElementwiseParameters<float, int8_t>)
938   ->UseRealTime();
939 BENCHMARK(xnnpack_convert_f32_qu8)
940   ->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint8_t>)
941   ->UseRealTime();
942 BENCHMARK(xnnpack_convert_qs8_f32)
943   ->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, float>)
944   ->UseRealTime();
945 BENCHMARK(xnnpack_convert_qu8_f32)
946   ->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, float>)
947   ->UseRealTime();
948 
949 #ifdef BENCHMARK_TENSORFLOW_LITE
950   BENCHMARK(tflite_convert_f16_f32)
951     ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, float>)
952     ->UseRealTime();
953   BENCHMARK(tflite_convert_f32_qs8)
954     ->Apply(benchmark::utils::UnaryElementwiseParameters<float, int8_t>)
955     ->UseRealTime();
956   BENCHMARK(tflite_convert_f32_qu8)
957     ->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint8_t>)
958     ->UseRealTime();
959   BENCHMARK(tflite_convert_qs8_f32)
960     ->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, float>)
961     ->UseRealTime();
962   BENCHMARK(tflite_convert_qu8_f32)
963     ->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, float>)
964     ->UseRealTime();
965 #endif  // BENCHMARK_TENSORFLOW_LITE
966 
967 #ifndef XNNPACK_BENCHMARK_NO_MAIN
968 BENCHMARK_MAIN();
969 #endif
970