xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/Winograd.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "Winograd.h"
25 
26 #include "tests/validation/Helpers.h"
27 #include "tests/validation/reference/Utils.h"
28 
29 #include "arm_compute/core/Types.h"
30 
31 #include <algorithm>
32 #include <cmath>
33 
34 namespace arm_compute
35 {
36 namespace test
37 {
38 namespace validation
39 {
40 namespace reference
41 {
42 namespace
43 {
44 template <typename T>
initialize_matrix_transform(SimpleTensor<T> & src,const Size2D & output_tile_size,const Size2D & kernel_size,WinogradTransformType winograd_transform_type)45 void initialize_matrix_transform(SimpleTensor<T> &src, const Size2D &output_tile_size, const Size2D &kernel_size, WinogradTransformType winograd_transform_type)
46 {
47     // Winograd input transform matrices
48     static const std::array<float, 16> imatrix2x2_3x3 =
49     {
50         1.0f, 0.0f, -1.0f, 0.0f,
51         0.0f, 1.0f, 1.0f, 0.0f,
52         0.0f, -1.0f, 1.0f, 0.0f,
53         0.0f, 1.0f, 0.0f, -1.0f
54     };
55 
56     static const std::array<float, 36> imatrix4x4_3x3 =
57     {
58         4.0f, 0.0f, -5.0f, 0.0f, 1.0f, 0.0f,
59         0.0f, -4.0f, -4.0f, 1.0f, 1.0f, 0.0f,
60         0.0f, 4.0f, -4.0f, -1.0f, 1.0f, 0.0f,
61         0.0f, -2.0f, -1.0f, 2.0f, 1.0f, 0.0f,
62         0.0f, 2.0f, -1.0f, -2.0f, 1.0f, 0.0f,
63         0.0f, 4.0f, 0.0f, -5.0f, 0.0f, 1.0f,
64     };
65 
66     static const std::array<float, 64> imatrix4x4_5x5 =
67     {
68         1.f, 0.f, -21.f / 4.f, 0.f, 21.f / 4.f, 0.f, -1.f, 0.f,
69         0.f, 1.f, 1.f, -17.f / 4.f, -17.f / 4.f, 1.f, 1.f, 0.f,
70         0.f, -1.f, 1.f, 17.f / 4.f, -17.f / 4.f, -1.f, 1.f, 0.f,
71         0.f, 1.f / 2.f, 1.f / 4.f, -5.f / 2.f, -5.f / 4.f, 2.f, 1.f, 0.f,
72         0.f, -1.f / 2.f, 1.f / 4.f, 5.f / 2.f, -5.f / 4.f, -2.f, 1.f, 0.f,
73         0.f, 2.f, 4.f, -5.f / 2.f, -5.f, 1.f / 2.f, 1.f, 0.f,
74         0.f, -2.f, 4.f, 5.f / 2.f, -5.f, -1.f / 2.f, 1.f, 0.f,
75         0.f, -1.f, 0.f, 21.f / 4.f, 0.f, -21.f / 4.f, 0.f, 1.f
76     };
77 
78     static const std::array<float, 64> imatrix2x1_7x7 =
79     {
80         -36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f, 0.0f,
81         0.0f, -36.0f, 36.0f, 13.0f, -13.0f, -1.0f, 1.0f, 0.0f,
82         0.0f, 36.0f, 36.0f, -13.0f, -13.0f, 1.0f, 1.0f, 0.0f,
83         0.0f, -18.0f, 9.0f, 20.0f, -10.0f, -2.0f, 1.0f, 0.0f,
84         0.0f, 18.0f, 9.0f, -20.0f, -10.0f, 2.0f, 1.0f, 0.0f,
85         0.0f, -12.0f, 4.0f, 15.0f, -5.0f, -3.0f, 1.0f, 0.0f,
86         0.0f, 12.0f, 4.0f, -15.0f, -5.0f, 3.0f, 1.0f, 0.0f,
87         0.0f, -36.0f, 0.0f, 49.0f, 0.0f, -14.0f, 0.0f, 1.0f
88     };
89 
90     // ------------------------------------------
91 
92     // Winograd filter transform matrices
93     static const std::array<float, 12> fmatrix2x2_3x3 =
94     {
95         1.0f, 0.0f, 0.0f,
96         0.5f, 0.5f, 0.5f,
97         0.5f, -0.5f, 0.5f,
98         0.0f, 0.0f, 1.0f
99     };
100 
101     static const std::array<float, 18> fmatrix4x4_3x3 =
102     {
103         0.25f, 0.0f, 0.0f,
104         -1.0f / 6.0f, -1.0f / 6.0f, -1.0f / 6.0f,
105         -1.0f / 6.0f, 1.0f / 6.0f, -1.0f / 6.0f,
106         1.0f / 24.0f, 1.0f / 12.0f, 1.0f / 6.0f,
107         1.0f / 24.0f, -1.0f / 12.0f, 1.0f / 6.0f,
108         0.0f, 0.0f, 1.0f
109     };
110 
111     static const std::array<float, 40> fmatrix4x4_5x5 =
112     {
113         1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
114         -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f,
115         -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f,
116         1.0f / 90.0f, 1.0f / 45.0f, 2.0f / 45.0f, 4.0f / 45.0f, 8.0f / 45.0f,
117         1.0f / 90.0f, -1.0f / 45.0f, 2.0f / 45.0f, -4.0f / 45.0f, 8.0f / 45.0f,
118         4.0f / 45.0f, 2.0f / 45.0f, 1.0f / 45.0f, 1.0f / 90.0f, 1.0f / 180.0f,
119         4.0f / 45.0f, -2.0f / 45.0f, 1.0f / 45.0f, -1.0f / 90.0f, 1.0f / 180.0f,
120         0.0f, 0.0f, 0.0f, 0.0f, 1.0f
121 
122     };
123 
124     static const std::array<float, 56> fmatrix2x1_7x7 =
125     {
126         -1.0f / 36.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
127         1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f, -1.0f / 48.0f, 1.0f / 48.0f,
128         1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f, 1.0f / 48.0f,
129         -1.0f / 120.0f, 1.0f / 60.0f, -1.0f / 30.0f, 1.0f / 15.0f, -2.0f / 15.0f, 4.0f / 15.0f, -8.0f / 15.0f,
130         -1.0f / 120.0f, -1.0f / 60.0f, -1.0f / 30.0f, -1.0f / 15.0f, -2.0f / 15.0f, -4.0f / 15.0f, -8.0f / 15.0f,
131         1.0f / 720.0f, -1.0f / 240.0f, 1.0f / 80.0f, -3.0f / 80.0f, 9.0f / 80.0f, -27.0f / 80.0f, 81.0f / 80.0f,
132         1.0f / 720.0f, 1.0f / 240.0f, 1.0f / 80.0f, 3.0f / 80.0f, 9.0f / 80.0f, 27.0f / 80.0f, 81.0f / 80.0f,
133         0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f
134     };
135 
136     // ------------------------------------------
137 
138     // Winograd output transform matrices
139     static const std::array<float, 8> omatrix2x2_3x3 =
140     {
141         1.0f, 1.0f, 1.0f, 0.0f,
142         0.0f, 1.0f, -1.0f, -1.0f
143     };
144 
145     static const std::array<float, 24> omatrix4x4_3x3 =
146     {
147         1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
148         0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 0.0f,
149         0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 0.0f,
150         0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f
151     };
152 
153     static const std::array<float, 36> omatrix4x4_5x5 =
154     {
155         1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 8.0f, 8.0f, 0.0f,
156         0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 4.0f, -4.0f, 0.0f,
157         0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 2.0f, 2.0f, 0.0f,
158         0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f, -1.0f, 1.0f
159     };
160 
161     static const std::array<float, 16> omatrix2x1_7x7 =
162     {
163         1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
164         0.0f, -1.0f, 1.0f, -2.0f, 2.0f, -3.0f, 3.0f, 1.0f
165     };
166 
167     // ------------------------------------------
168 
169     using WinogradKey = std::tuple<std::pair<int, int>, std::pair<int, int>, WinogradTransformType>;
170 
171     // Key = (Output tile size, Kernel size, Winograd transform type)
172     static std::map<WinogradKey, const float *> matrix_map =
173     {
174         { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix2x2_3x3.data() },
175         { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix4x4_3x3.data() },
176         { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), WinogradTransformType::INPUT), imatrix2x2_3x3.data() },
177         { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), WinogradTransformType::INPUT), imatrix4x4_3x3.data() },
178         { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), WinogradTransformType::INPUT), imatrix2x2_3x3.data() },
179         { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), WinogradTransformType::INPUT), imatrix4x4_3x3.data() },
180         { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::INPUT), imatrix4x4_5x5.data() },
181         { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), WinogradTransformType::INPUT), imatrix4x4_5x5.data() },
182         { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), WinogradTransformType::INPUT), imatrix2x1_7x7.data() },
183         { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), WinogradTransformType::INPUT), imatrix2x1_7x7.data() },
184         { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7), WinogradTransformType::INPUT), imatrix2x1_7x7.data() },
185         { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), WinogradTransformType::INPUT), imatrix4x4_5x5.data() },
186         { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3.data() },
187         { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3.data() },
188         { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), WinogradTransformType::FILTER), fmatrix2x2_3x3.data() },
189         { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), WinogradTransformType::FILTER), fmatrix4x4_3x3.data() },
190         { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3.data() },
191         { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3.data() },
192         { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::FILTER), fmatrix4x4_5x5.data() },
193         { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), WinogradTransformType::FILTER), fmatrix4x4_5x5.data() },
194         { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), WinogradTransformType::FILTER), fmatrix2x1_7x7.data() },
195         { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), WinogradTransformType::FILTER), fmatrix2x1_7x7.data() },
196         { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7), WinogradTransformType::FILTER), fmatrix2x1_7x7.data() },
197         { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), WinogradTransformType::FILTER), fmatrix4x4_5x5.data() },
198         { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3.data() },
199         { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3.data() },
200         { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(3, 1), WinogradTransformType::OUTPUT), omatrix2x2_3x3.data() },
201         { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(3, 1), WinogradTransformType::OUTPUT), omatrix4x4_3x3.data() },
202         { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3.data() },
203         { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3.data() },
204         { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::OUTPUT), omatrix4x4_5x5.data() },
205         { WinogradKey(std::pair<int, int>(4, 1), std::pair<int, int>(5, 1), WinogradTransformType::OUTPUT), omatrix4x4_5x5.data() },
206         { WinogradKey(std::pair<int, int>(2, 1), std::pair<int, int>(7, 1), WinogradTransformType::OUTPUT), omatrix2x1_7x7.data() },
207         { WinogradKey(std::pair<int, int>(1, 2), std::pair<int, int>(1, 7), WinogradTransformType::OUTPUT), omatrix2x1_7x7.data() },
208         { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(7, 7), WinogradTransformType::OUTPUT), omatrix2x1_7x7.data() },
209         { WinogradKey(std::pair<int, int>(1, 4), std::pair<int, int>(1, 5), WinogradTransformType::OUTPUT), omatrix4x4_5x5.data() },
210     };
211 
212     // Find transformation matrix
213     std::map<WinogradKey, const float *>::iterator it;
214 
215     it = matrix_map.find(WinogradKey(std::pair<int, int>(output_tile_size.width, output_tile_size.height),
216                                      std::pair<int, int>(kernel_size.width, kernel_size.height),
217                                      winograd_transform_type));
218 
219     float const *matrix_values = nullptr;
220     if(it != matrix_map.end())
221     {
222         // Get matrix pointer
223         matrix_values = it->second;
224     }
225     else
226     {
227         ARM_COMPUTE_ERROR("Winograd configuration not supported");
228     }
229 
230     // Copy values
231     std::copy(&matrix_values[0], &matrix_values[0] + src.num_elements(), &src[0]);
232 }
233 } // namespace
234 
235 template <typename T>
winograd_input_transform(const SimpleTensor<T> & in,const TensorShape & output_shape,const WinogradInfo & winograd_info)236 SimpleTensor<T> winograd_input_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
237 {
238     ARM_COMPUTE_ERROR_ON(in.data_layout() != DataLayout::NCHW);
239 
240     const PadStrideInfo conv_info        = winograd_info.convolution_info;
241     const Size2D        output_tile_size = winograd_info.output_tile_size;
242     const Size2D        kernel_size      = winograd_info.kernel_size;
243 
244     SimpleTensor<T> out{ output_shape, in.data_type() };
245 
246     // Calculate dimensions for the tile
247     const unsigned int tile_w = output_tile_size.width + kernel_size.width - 1;
248     const unsigned int tile_h = output_tile_size.height + kernel_size.height - 1;
249 
250     // Get the maximum dimension from the tile size
251     const unsigned int tile_max_dim = std::max(tile_w, tile_h);
252 
253     TensorShape tile_dims(tile_max_dim, tile_max_dim);
254 
255     // Simple tensor for the input tile
256     SimpleTensor<T> src_tile{ tile_dims, in.data_type() };
257 
258     // Simple tensor for the temporary tile
259     SimpleTensor<T> tmp_tile{ tile_dims, in.data_type() };
260 
261     // Simple tensor for the output tile
262     SimpleTensor<T> dst_tile{ tile_dims, in.data_type() };
263 
264     // Simple tensor for the transformation matrix
265     SimpleTensor<T> matrix{ tile_dims, in.data_type() };
266 
267     // Simple tensor for the transformation matrix transposed
268     SimpleTensor<T> matrix_transposed{ tile_dims, in.data_type() };
269 
270     // Initialize matrix for the input transform
271     initialize_matrix_transform(matrix, output_tile_size, kernel_size, WinogradTransformType::INPUT);
272 
273     // Transpose matrix
274     transpose_matrix<T>(matrix, matrix_transposed);
275 
276     const int in_w        = in.shape().x();
277     const int in_h        = in.shape().y();
278     const int in_d        = in.shape().z();
279     const int out_d       = out.shape().z();
280     const int num_batches = in.shape().total_size() / (in_w * in_h * in_d);
281     const int step_x      = output_tile_size.width;
282     const int step_y      = output_tile_size.height;
283 
284     // Compute the number of output tiles along the x and y direction of size "output_tile_size"
285     const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(in_w, in_h),
286                                                                 kernel_size,
287                                                                 output_tile_size,
288                                                                 conv_info);
289 
290     const int num_tiles_x = num_tiles.width;
291     const int num_tiles_y = num_tiles.height;
292 
293     // In case of 1D convolution, the input tile has to be partially filled with zeros
294     int start_x_zero = 0;
295     int start_y_zero = 0;
296     int end_x_zero   = 0;
297     int end_y_zero   = 0;
298 
299     if(output_tile_size.width == 1)
300     {
301         start_x_zero = 1;
302         start_y_zero = 0;
303         end_x_zero   = tile_max_dim - 1;
304         end_y_zero   = tile_max_dim;
305     }
306     else if(output_tile_size.height == 1)
307     {
308         start_x_zero = 0;
309         start_y_zero = 1;
310         end_x_zero   = tile_max_dim;
311         end_y_zero   = tile_max_dim - 1;
312     }
313 
314     // Set the anchor and shape of the zeros area
315     const Coordinates anchor_zeros(start_x_zero, start_y_zero);
316     const TensorShape shape_zeros(end_x_zero, end_y_zero);
317 
318     // If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step = width of the output tile)
319     const int step_y_transf_tile = kernel_size.width == 1 ? tile_max_dim : 1;
320 
321     ARM_COMPUTE_ERROR_ON((num_tiles_x * num_tiles_y) != static_cast<int>(out.shape().y()));
322 
323     for(int b = 0; b < num_batches; ++b)
324     {
325         for(int z = 0; z < in_d; ++z)
326         {
327             for(int y = 0; y < num_tiles_y; ++y)
328             {
329                 for(int x = 0; x < num_tiles_x; ++x)
330                 {
331                     int xi = x * step_x - conv_info.pad_left();
332                     int yi = y * step_y - conv_info.pad_top();
333 
334                     // Get the tile from the input tensor
335                     get_tile<T>(in, src_tile, Coordinates(xi, yi, z, b));
336 
337                     // Fill partially with zeros in case of 1D convolution
338                     zeros<T>(src_tile, anchor_zeros, shape_zeros);
339 
340                     // Compute the transformation
341                     matrix_multiply<T>(matrix, src_tile, tmp_tile);
342                     matrix_multiply<T>(tmp_tile, matrix_transposed, dst_tile);
343 
344                     // Store the output tile across the channels
345                     for(int i = 0; i < out_d; ++i)
346                     {
347                         int xo = z;
348                         int yo = x + y * num_tiles_x;
349                         out[coords2index(out.shape(), Coordinates(xo, yo, i, b))] = dst_tile[i * step_y_transf_tile];
350                     }
351                 }
352             }
353         }
354     }
355 
356     return out;
357 }
358 
359 template <typename T>
winograd_filter_transform(const SimpleTensor<T> & in,const TensorShape & output_shape,const WinogradInfo & winograd_info)360 SimpleTensor<T> winograd_filter_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
361 {
362     ARM_COMPUTE_ERROR_ON_MSG(in.data_layout() != DataLayout::NCHW, "Only supported NCHW data format");
363 
364     // Create reference
365     SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
366 
367     const Size2D output_tile_size = winograd_info.output_tile_size;
368     const Size2D kernel_size      = winograd_info.kernel_size;
369 
370     // Calculate dimensions for the tile
371     const unsigned int input_tile_w    = output_tile_size.width + kernel_size.width - 1;
372     const unsigned int input_tile_h    = output_tile_size.height + kernel_size.height - 1;
373     const unsigned int input_tile_area = input_tile_w * input_tile_h;
374 
375     // Get the maximum dimension from the filter size
376     const unsigned int kernel_max_dim = std::max(kernel_size.width, kernel_size.height);
377 
378     // Get the maximum dimension from the input tile
379     const unsigned int input_tile_max_dim = std::max(input_tile_w, input_tile_h);
380 
381     // Simple tensor for the input tile
382     SimpleTensor<T> input_tile{ TensorShape(kernel_max_dim, kernel_max_dim), in.data_type(), 1 };
383 
384     // Simple tensor for the transformation matrix
385     SimpleTensor<T> trans_matrix{ TensorShape(kernel_max_dim, input_tile_max_dim), in.data_type(), 1 };
386 
387     // Simple tensor for the transformation matrix transpose
388     SimpleTensor<T> trans_matrix_transposed{ TensorShape(input_tile_max_dim, kernel_max_dim), in.data_type(), 1 };
389 
390     // Simple tensor for the temporary tile
391     SimpleTensor<T> tmp_tile{ TensorShape(kernel_max_dim, input_tile_max_dim), in.data_type(), 1 };
392 
393     // Simple tensor for the output tile
394     SimpleTensor<T> transf_tile{ TensorShape(input_tile_max_dim, input_tile_max_dim), in.data_type(), 1 };
395 
396     // Initialize matrix for the filter transform
397     initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::FILTER);
398 
399     // Transpose the transformation matrix
400     transpose_matrix<T>(trans_matrix, trans_matrix_transposed);
401 
402     const int num_channels = in.shape()[2];
403     const int num_filters  = in.shape()[3];
404     const int num_batches  = in.shape().total_size() / (kernel_size.area() * num_channels * num_filters);
405 
406     // If we have a vertical filter (i.e. 1x3, 1x5,..), we need to take the elements along the y direction (step_y_transf_tile = width of the output tile)
407     const int step_y_transf_tile = kernel_size.width == 1 ? input_tile_max_dim : 1;
408 
409     for(int n = 0; n < num_batches; ++n)
410     {
411         for(int w = 0; w < num_filters; ++w)
412         {
413             for(int z = 0; z < num_channels; ++z)
414             {
415                 // Load the tile from the input tensor
416                 get_tile<T>(in, input_tile, Coordinates(0, 0, z, w, n));
417 
418                 // First transformation
419                 matrix_multiply<T>(trans_matrix, input_tile, tmp_tile);
420 
421                 // Second transformation
422                 matrix_multiply<T>(tmp_tile, trans_matrix_transposed, transf_tile);
423 
424                 // Store the output tile across the channels
425                 const int output_offset = w + z * num_filters;
426 
427                 // Store the values across the channels
428                 for(unsigned int i = 0; i < input_tile_area; ++i)
429                 {
430                     out[output_offset + i * num_filters * num_channels] = transf_tile[i * step_y_transf_tile];
431                 }
432             }
433         }
434     }
435 
436     return out;
437 }
438 
439 template <typename T>
winograd_output_transform(const SimpleTensor<T> & in,const SimpleTensor<T> & b,const TensorShape & output_shape,const WinogradInfo & winograd_info)440 SimpleTensor<T> winograd_output_transform(const SimpleTensor<T> &in, const SimpleTensor<T> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info)
441 {
442     const PadStrideInfo conv_info        = winograd_info.convolution_info;
443     const Size2D        input_dimensions = winograd_info.input_dimensions;
444     const Size2D        output_tile_size = winograd_info.output_tile_size;
445     const Size2D        kernel_size      = winograd_info.kernel_size;
446 
447     // Create reference
448     SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
449 
450     // Calculate dimensions for the tiles
451     const unsigned int in_tile_w  = output_tile_size.width + kernel_size.width - 1;
452     const unsigned int in_tile_h  = output_tile_size.height + kernel_size.height - 1;
453     const unsigned int out_tile_w = output_tile_size.width;
454     const unsigned int out_tile_h = output_tile_size.height;
455 
456     ARM_COMPUTE_ERROR_ON(in.shape()[2] != (in_tile_w * in_tile_h));
457     ARM_COMPUTE_ERROR_ON(in.shape()[0] != out.shape()[get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::CHANNEL)]);
458 
459     // Get the maximum dimension from the tile size
460     const unsigned int in_tile_max_dim  = std::max(in_tile_w, in_tile_h);
461     const unsigned int out_tile_max_dim = std::max(output_tile_size.width, output_tile_size.height);
462 
463     // Compute tile dimensions
464     // Input tile dimensions
465     TensorShape in_tile_dims(in_tile_max_dim, in_tile_max_dim);
466 
467     // Output tile dimensions
468     TensorShape out_tile_dims(out_tile_max_dim, out_tile_max_dim);
469 
470     // Transformation matrix dimensions
471     TensorShape tr_tile_dims(in_tile_max_dim, out_tile_max_dim);
472 
473     // Create tensors
474     // Simple tensor for the input tile
475     SimpleTensor<T> input_tile{ in_tile_dims, in.data_type(), 1 };
476 
477     // Simple tensor for the transformation matrix
478     SimpleTensor<T> trans_matrix{ tr_tile_dims, in.data_type(), 1 };
479 
480     // Simple tensor for the transformation matrix transpose
481     SimpleTensor<T> trans_matrix_transposed{ TensorShape(tr_tile_dims[1], tr_tile_dims[0]), in.data_type(), 1 };
482 
483     // Simple tensor for the temporary tile
484     SimpleTensor<T> tmp_tile{ tr_tile_dims, in.data_type(), 1 };
485 
486     // Simple tensor for the output tile
487     SimpleTensor<T> output_tile{ out_tile_dims, in.data_type(), 1 };
488 
489     // Initialize matrix for the output transform
490     initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::OUTPUT);
491 
492     // Transpose the transformation matrix
493     transpose_matrix<T>(trans_matrix, trans_matrix_transposed);
494 
495     const int w_in        = in.shape()[0];
496     const int h_in        = in.shape()[1];
497     const int c_in        = in.shape()[2];
498     const int w_out       = out.shape()[0];
499     const int h_out       = out.shape()[1];
500     const int c_out       = out.shape()[2];
501     const int num_batches = in.shape().total_size() / (w_in * h_in * c_in);
502 
503     // Input strides
504     const int stridey_in = w_in;
505     const int stridez_in = stridey_in * h_in;
506     const int stridew_in = stridez_in * c_in;
507 
508     // Output strides
509     const int stridey_out = w_out;
510     const int stridez_out = stridey_out * h_out;
511     const int stridew_out = stridez_out * c_out;
512 
513     // Compute the number of output tiles along the x and y direction of size "output_tile_size"
514     const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input_dimensions.width, input_dimensions.height),
515                                                                 kernel_size,
516                                                                 output_tile_size,
517                                                                 conv_info);
518 
519     const int num_tiles_x = num_tiles.width;
520     const int num_tiles_y = num_tiles.height;
521 
522     ARM_COMPUTE_UNUSED(num_tiles_y);
523     ARM_COMPUTE_ERROR_ON(in.shape()[1] != static_cast<unsigned int>(num_tiles_x * num_tiles_y));
524 
525     // If we have a vertical filter (i.e. 1x3, 1x5,..), we still need to take the elements along the x direction (step_y_transf_tile = 1)
526     const int step_y_transf_tile = kernel_size.width == 1 ? 1 : output_tile.shape()[0];
527 
528     // Initialize with zeros the input tile
529     zeros<T>(input_tile, Coordinates(0, 0), input_tile.shape());
530 
531     for(int n = 0; n < num_batches; ++n)
532     {
533         for(int y = 0; y < h_in; ++y)
534         {
535             for(int x = 0; x < w_in; ++x)
536             {
537                 // Load the input tile tile across the channels of the input tensor
538                 for(int z = 0; z < c_in; ++z)
539                 {
540                     input_tile[z] = in[x + (y * stridey_in) + (z * stridez_in) + (n * stridew_in)];
541                 }
542 
543                 // First transformation
544                 matrix_multiply<T>(trans_matrix, input_tile, tmp_tile);
545 
546                 // Second transformation
547                 matrix_multiply<T>(tmp_tile, trans_matrix_transposed, output_tile);
548 
549                 // Store the output tile
550                 const int xo = (y % num_tiles_x) * out_tile_w;
551                 const int yo = (y / num_tiles_x) * out_tile_h;
552                 const int zo = x;
553 
554                 const int output_offset = xo + (yo * stridey_out) + (zo * stridez_out) + (n * stridew_out);
555 
556                 for(int yi = 0; yi < static_cast<int>(out_tile_h); ++yi)
557                 {
558                     for(int xi = 0; xi < static_cast<int>(out_tile_w); ++xi)
559                     {
560                         // Check out-of-bound writes
561                         if((xo + xi < w_out) && (yo + yi < h_out))
562                         {
563                             out[output_offset + yi * stridey_out + xi] = output_tile[xi + yi * step_y_transf_tile];
564 
565                             // Add bias
566                             out[output_offset + yi * stridey_out + xi] += b[zo];
567                         }
568                     }
569                 }
570             }
571         }
572     }
573 
574     return out;
575 }
576 
577 template SimpleTensor<float> winograd_filter_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
578 template SimpleTensor<float> winograd_input_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
579 template SimpleTensor<float> winograd_output_transform(const SimpleTensor<float> &in, const SimpleTensor<float> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info);
580 template SimpleTensor<half> winograd_filter_transform(const SimpleTensor<half> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
581 template SimpleTensor<half> winograd_input_transform(const SimpleTensor<half> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
582 template SimpleTensor<half> winograd_output_transform(const SimpleTensor<half> &in, const SimpleTensor<half> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info);
583 
584 } // namespace reference
585 } // namespace validation
586 } // namespace test
587 } // namespace arm_compute
588