xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/ROIAlignLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "ROIAlignLayer.h"
25 
26 #include "arm_compute/core/Types.h"
27 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
28 #include "tests/validation/Helpers.h"
29 
30 #include <algorithm>
31 
32 namespace arm_compute
33 {
34 namespace test
35 {
36 namespace validation
37 {
38 namespace reference
39 {
40 namespace
41 {
42 /** Average pooling over an aligned window */
roi_align_1x1(const float * input,TensorShape input_shape,float region_start_x,float bin_size_x,int grid_size_x,float region_end_x,float region_start_y,float bin_size_y,int grid_size_y,float region_end_y,int pz)43 inline float roi_align_1x1(const float *input, TensorShape input_shape,
44                            float region_start_x,
45                            float bin_size_x,
46                            int   grid_size_x,
47                            float region_end_x,
48                            float region_start_y,
49                            float bin_size_y,
50                            int   grid_size_y,
51                            float region_end_y,
52                            int   pz)
53 {
54     if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
55     {
56         return 0;
57     }
58     else
59     {
60         float avg = 0;
61         // Iterate through the aligned pooling region
62         for(int iy = 0; iy < grid_size_y; ++iy)
63         {
64             for(int ix = 0; ix < grid_size_x; ++ix)
65             {
66                 // Align the window in the middle of every bin
67                 float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y);
68                 float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x);
69 
70                 // Interpolation in the [0,0] [0,1] [1,0] [1,1] square
71                 const int y_low  = y;
72                 const int x_low  = x;
73                 const int y_high = y_low + 1;
74                 const int x_high = x_low + 1;
75 
76                 const float ly = y - y_low;
77                 const float lx = x - x_low;
78                 const float hy = 1. - ly;
79                 const float hx = 1. - lx;
80 
81                 const float w1 = hy * hx;
82                 const float w2 = hy * lx;
83                 const float w3 = ly * hx;
84                 const float w4 = ly * lx;
85 
86                 const size_t idx1  = coord2index(input_shape, Coordinates(x_low, y_low, pz));
87                 float        data1 = input[idx1];
88 
89                 const size_t idx2  = coord2index(input_shape, Coordinates(x_high, y_low, pz));
90                 float        data2 = input[idx2];
91 
92                 const size_t idx3  = coord2index(input_shape, Coordinates(x_low, y_high, pz));
93                 float        data3 = input[idx3];
94 
95                 const size_t idx4  = coord2index(input_shape, Coordinates(x_high, y_high, pz));
96                 float        data4 = input[idx4];
97 
98                 avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
99             }
100         }
101 
102         avg /= grid_size_x * grid_size_y;
103 
104         return avg;
105     }
106 }
107 
108 template <typename TI, typename TO>
float_converter(const SimpleTensor<TI> & tensor,DataType dst_dt)109 SimpleTensor<TO> float_converter(const SimpleTensor<TI> &tensor, DataType dst_dt)
110 {
111     SimpleTensor<TO> dst{ tensor.shape(), dst_dt, 1, QuantizationInfo(), tensor.data_layout() };
112 #if defined(_OPENMP)
113     #pragma omp parallel for
114 #endif /* _OPENMP */
115     for(int i = 0; i < tensor.num_elements(); ++i)
116     {
117         dst[i] = tensor[i];
118     }
119     return dst;
120 }
121 
convert_rois_from_asymmetric(SimpleTensor<uint16_t> rois)122 SimpleTensor<float> convert_rois_from_asymmetric(SimpleTensor<uint16_t> rois)
123 {
124     const UniformQuantizationInfo &quantization_info = rois.quantization_info().uniform();
125     SimpleTensor<float>            dst{ rois.shape(), DataType::F32, 1, QuantizationInfo(), rois.data_layout() };
126 
127     for(int i = 0; i < rois.num_elements(); i += 5)
128     {
129         dst[i]     = static_cast<float>(rois[i]); // batch idx
130         dst[i + 1] = dequantize_qasymm16(rois[i + 1], quantization_info);
131         dst[i + 2] = dequantize_qasymm16(rois[i + 2], quantization_info);
132         dst[i + 3] = dequantize_qasymm16(rois[i + 3], quantization_info);
133         dst[i + 4] = dequantize_qasymm16(rois[i + 4], quantization_info);
134     }
135     return dst;
136 }
137 } // namespace
138 
139 template <>
roi_align_layer(const SimpleTensor<float> & src,const SimpleTensor<float> & rois,const ROIPoolingLayerInfo & pool_info,const QuantizationInfo & output_qinfo)140 SimpleTensor<float> roi_align_layer(const SimpleTensor<float> &src, const SimpleTensor<float> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
141 {
142     ARM_COMPUTE_UNUSED(output_qinfo);
143 
144     const size_t values_per_roi = rois.shape()[0];
145     const size_t num_rois       = rois.shape()[1];
146     DataType     dst_data_type  = src.data_type();
147 
148     const auto *rois_ptr = static_cast<const float *>(rois.data());
149 
150     TensorShape         input_shape = src.shape();
151     TensorShape         output_shape(pool_info.pooled_width(), pool_info.pooled_height(), src.shape()[2], num_rois);
152     SimpleTensor<float> dst(output_shape, dst_data_type);
153 
154     // Iterate over every pixel of the input image
155     for(size_t px = 0; px < pool_info.pooled_width(); ++px)
156     {
157         for(size_t py = 0; py < pool_info.pooled_height(); ++py)
158         {
159             for(size_t pw = 0; pw < num_rois; ++pw)
160             {
161                 const unsigned int roi_batch = rois_ptr[values_per_roi * pw];
162                 const auto         x1        = float(rois_ptr[values_per_roi * pw + 1]);
163                 const auto         y1        = float(rois_ptr[values_per_roi * pw + 2]);
164                 const auto         x2        = float(rois_ptr[values_per_roi * pw + 3]);
165                 const auto         y2        = float(rois_ptr[values_per_roi * pw + 4]);
166 
167                 const float roi_anchor_x = x1 * pool_info.spatial_scale();
168                 const float roi_anchor_y = y1 * pool_info.spatial_scale();
169                 const float roi_dims_x   = std::max((x2 - x1) * pool_info.spatial_scale(), 1.0f);
170                 const float roi_dims_y   = std::max((y2 - y1) * pool_info.spatial_scale(), 1.0f);
171 
172                 float bin_size_x     = roi_dims_x / pool_info.pooled_width();
173                 float bin_size_y     = roi_dims_y / pool_info.pooled_height();
174                 float region_start_x = px * bin_size_x + roi_anchor_x;
175                 float region_start_y = py * bin_size_y + roi_anchor_y;
176                 float region_end_x   = (px + 1) * bin_size_x + roi_anchor_x;
177                 float region_end_y   = (py + 1) * bin_size_y + roi_anchor_y;
178 
179                 region_start_x = utility::clamp(region_start_x, 0.0f, float(input_shape[0]));
180                 region_start_y = utility::clamp(region_start_y, 0.0f, float(input_shape[1]));
181                 region_end_x   = utility::clamp(region_end_x, 0.0f, float(input_shape[0]));
182                 region_end_y   = utility::clamp(region_end_y, 0.0f, float(input_shape[1]));
183 
184                 const int roi_bin_grid_x = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_x));
185                 const int roi_bin_grid_y = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_y));
186 
187                 // Move input and output pointer across the fourth dimension
188                 const size_t input_stride_w  = input_shape[0] * input_shape[1] * input_shape[2];
189                 const size_t output_stride_w = output_shape[0] * output_shape[1] * output_shape[2];
190                 const float *input_ptr       = src.data() + roi_batch * input_stride_w;
191                 float       *output_ptr      = dst.data() + px + py * output_shape[0] + pw * output_stride_w;
192 
193                 for(int pz = 0; pz < int(input_shape[2]); ++pz)
194                 {
195                     // For every pixel pool over an aligned region
196                     *(output_ptr + pz * output_shape[0] * output_shape[1]) = roi_align_1x1(input_ptr, input_shape,
197                                                                                            region_start_x,
198                                                                                            bin_size_x,
199                                                                                            roi_bin_grid_x,
200                                                                                            region_end_x,
201                                                                                            region_start_y,
202                                                                                            bin_size_y,
203                                                                                            roi_bin_grid_y,
204                                                                                            region_end_y, pz);
205                 }
206             }
207         }
208     }
209     return dst;
210 }
211 
212 template <>
roi_align_layer(const SimpleTensor<half> & src,const SimpleTensor<half> & rois,const ROIPoolingLayerInfo & pool_info,const QuantizationInfo & output_qinfo)213 SimpleTensor<half> roi_align_layer(const SimpleTensor<half> &src, const SimpleTensor<half> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
214 {
215     SimpleTensor<float> src_tmp  = float_converter<half, float>(src, DataType::F32);
216     SimpleTensor<float> rois_tmp = float_converter<half, float>(rois, DataType::F32);
217     SimpleTensor<float> dst_tmp  = roi_align_layer<float, float>(src_tmp, rois_tmp, pool_info, output_qinfo);
218     SimpleTensor<half>  dst      = float_converter<float, half>(dst_tmp, DataType::F16);
219     return dst;
220 }
221 
222 template <>
roi_align_layer(const SimpleTensor<uint8_t> & src,const SimpleTensor<uint16_t> & rois,const ROIPoolingLayerInfo & pool_info,const QuantizationInfo & output_qinfo)223 SimpleTensor<uint8_t> roi_align_layer(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint16_t> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
224 {
225     SimpleTensor<float>   src_tmp  = convert_from_asymmetric(src);
226     SimpleTensor<float>   rois_tmp = convert_rois_from_asymmetric(rois);
227     SimpleTensor<float>   dst_tmp  = roi_align_layer<float, float>(src_tmp, rois_tmp, pool_info, output_qinfo);
228     SimpleTensor<uint8_t> dst      = convert_to_asymmetric<uint8_t>(dst_tmp, output_qinfo);
229     return dst;
230 }
231 template <>
roi_align_layer(const SimpleTensor<int8_t> & src,const SimpleTensor<uint16_t> & rois,const ROIPoolingLayerInfo & pool_info,const QuantizationInfo & output_qinfo)232 SimpleTensor<int8_t> roi_align_layer(const SimpleTensor<int8_t> &src, const SimpleTensor<uint16_t> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
233 {
234     SimpleTensor<float>  src_tmp  = convert_from_asymmetric(src);
235     SimpleTensor<float>  rois_tmp = convert_rois_from_asymmetric(rois);
236     SimpleTensor<float>  dst_tmp  = roi_align_layer<float, float>(src_tmp, rois_tmp, pool_info, output_qinfo);
237     SimpleTensor<int8_t> dst      = convert_to_asymmetric<int8_t>(dst_tmp, output_qinfo);
238     return dst;
239 }
240 } // namespace reference
241 } // namespace validation
242 } // namespace test
243 } // namespace arm_compute
244