xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/NonMaxSuppression.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "NonMaxSuppression.h"
25 
26 #include "arm_compute/core/Types.h"
27 #include "tests/validation/Helpers.h"
28 
29 namespace arm_compute
30 {
31 namespace test
32 {
33 namespace validation
34 {
35 namespace reference
36 {
37 namespace
38 {
39 using CandidateBox = std::pair<int /* index */, float /* score */>;
40 using Box          = std::tuple<float, float, float, float>;
41 
get_elem_by_coordinate(const SimpleTensor<float> & tensor,Coordinates coord)42 inline float get_elem_by_coordinate(const SimpleTensor<float> &tensor, Coordinates coord)
43 {
44     return *static_cast<const float *>(tensor(coord));
45 }
46 
get_box(const SimpleTensor<float> & boxes,size_t id)47 inline Box get_box(const SimpleTensor<float> &boxes, size_t id)
48 {
49     return std::make_tuple(
50                get_elem_by_coordinate(boxes, Coordinates(0, id)),
51                get_elem_by_coordinate(boxes, Coordinates(1, id)),
52                get_elem_by_coordinate(boxes, Coordinates(2, id)),
53                get_elem_by_coordinate(boxes, Coordinates(3, id)));
54 }
55 
56 // returns a pair (minX, minY)
get_min_yx(Box b)57 inline std::pair<float, float> get_min_yx(Box b)
58 {
59     return std::make_pair(
60                std::min<float>(std::get<0>(b), std::get<2>(b)),
61                std::min<float>(std::get<1>(b), std::get<3>(b)));
62 }
63 // returns a pair (maxX, maxY)
get_max_yx(Box b)64 inline std::pair<float, float> get_max_yx(Box b)
65 {
66     return std::make_pair(
67                std::max<float>(std::get<0>(b), std::get<2>(b)),
68                std::max<float>(std::get<1>(b), std::get<3>(b)));
69 }
70 
compute_size(const std::pair<float,float> & min,const std::pair<float,float> & max)71 inline float compute_size(const std::pair<float, float> &min, const std::pair<float, float> &max)
72 {
73     return (max.first - min.first) * (max.second - min.second);
74 }
75 
compute_intersection(const std::pair<float,float> & b0_min,const std::pair<float,float> & b0_max,const std::pair<float,float> & b1_min,const std::pair<float,float> & b1_max,float b0_size,float b1_size)76 inline float compute_intersection(const std::pair<float, float> &b0_min, const std::pair<float, float> &b0_max,
77                                   const std::pair<float, float> &b1_min, const std::pair<float, float> &b1_max, float b0_size, float b1_size)
78 {
79     const float inter = std::max<float>(std::min<float>(b0_max.first, b1_max.first) - std::max<float>(b0_min.first, b1_min.first), 0.0f) * std::max<float>(std::min<float>(b0_max.second,
80                         b1_max.second)
81                         - std::max<float>(b0_min.second, b1_min.second),
82                         0.0f);
83     return inter / (b0_size + b1_size - inter);
84 }
85 
reject_box(Box b0,Box b1,float threshold)86 inline bool reject_box(Box b0, Box b1, float threshold)
87 {
88     const auto  b0_min  = get_min_yx(b0);
89     const auto  b0_max  = get_max_yx(b0);
90     const auto  b1_min  = get_min_yx(b1);
91     const auto  b1_max  = get_max_yx(b1);
92     const float b0_size = compute_size(b0_min, b0_max);
93     const float b1_size = compute_size(b1_min, b1_max);
94     if(b0_size <= 0.f || b1_size <= 0.f)
95     {
96         return false;
97     }
98     else
99     {
100         const float box_weight = compute_intersection(b0_min, b0_max, b1_min, b1_max, b0_size, b1_size);
101         return box_weight > threshold;
102     }
103 }
104 
get_candidates(const SimpleTensor<float> & scores,float threshold)105 inline std::vector<CandidateBox> get_candidates(const SimpleTensor<float> &scores, float threshold)
106 {
107     std::vector<CandidateBox> candidates_vector;
108     for(int i = 0; i < scores.num_elements(); ++i)
109     {
110         if(scores[i] >= threshold)
111         {
112             const auto cb = CandidateBox({ i, scores[i] });
113             candidates_vector.push_back(cb);
114         }
115     }
116     std::stable_sort(candidates_vector.begin(), candidates_vector.end(), [](const CandidateBox bb0, const CandidateBox bb1)
117     {
118         return bb0.second > bb1.second;
119     });
120     return candidates_vector;
121 }
122 
is_box_selected(const CandidateBox & cb,const SimpleTensor<float> & bboxes,std::vector<int> & selected_boxes,float threshold)123 inline bool is_box_selected(const CandidateBox &cb, const SimpleTensor<float> &bboxes, std::vector<int> &selected_boxes, float threshold)
124 {
125     for(int j = selected_boxes.size() - 1; j >= 0; --j)
126     {
127         const auto selected_box_jth   = get_box(bboxes, selected_boxes[j]);
128         const auto candidate_box      = get_box(bboxes, cb.first);
129         const bool candidate_rejected = reject_box(candidate_box, selected_box_jth, threshold);
130         if(candidate_rejected)
131         {
132             return false;
133         }
134     }
135     return true;
136 }
137 } // namespace
138 
non_max_suppression(const SimpleTensor<float> & bboxes,const SimpleTensor<float> & scores,SimpleTensor<int> & indices,unsigned int max_output_size,float score_threshold,float nms_threshold)139 SimpleTensor<int> non_max_suppression(const SimpleTensor<float> &bboxes, const SimpleTensor<float> &scores, SimpleTensor<int> &indices,
140                                       unsigned int max_output_size, float score_threshold, float nms_threshold)
141 {
142     const size_t                    num_boxes         = bboxes.shape().y();
143     const size_t                    output_size       = std::min(static_cast<size_t>(max_output_size), num_boxes);
144     const std::vector<CandidateBox> candidates_vector = get_candidates(scores, score_threshold);
145     std::vector<int>                selected;
146     for(const auto &c : candidates_vector)
147     {
148         if(selected.size() == output_size)
149         {
150             break;
151         }
152         if(is_box_selected(c, bboxes, selected, nms_threshold))
153         {
154             selected.push_back(c.first);
155         }
156     }
157     std::copy_n(selected.begin(), selected.size(), indices.data());
158 
159     for(unsigned int i = selected.size(); i < max_output_size; ++i)
160     {
161         indices[i] = -1;
162     }
163 
164     return indices;
165 }
166 } // namespace reference
167 } // namespace validation
168 } // namespace test
169 } // namespace arm_compute
170