xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/DepthToSpaceLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "DepthToSpaceLayer.h"
25 
26 #include "tests/validation/Helpers.h"
27 
28 namespace arm_compute
29 {
30 namespace test
31 {
32 namespace validation
33 {
34 namespace reference
35 {
36 // Batch to Space
37 template <typename T>
depth_to_space(const SimpleTensor<T> & src,const TensorShape & dst_shape,int32_t block_shape)38 SimpleTensor<T> depth_to_space(const SimpleTensor<T> &src, const TensorShape &dst_shape, int32_t block_shape)
39 {
40     ARM_COMPUTE_ERROR_ON(block_shape <= 0);
41     SimpleTensor<T> result(dst_shape, src.data_type());
42 
43     const auto width_in   = static_cast<int>(src.shape()[0]);
44     const auto height_in  = static_cast<int>(src.shape()[1]);
45     const auto channel_in = static_cast<int>(src.shape()[2]);
46     const auto batch_in   = static_cast<int>(src.shape()[3]);
47     const int  r          = channel_in / (block_shape * block_shape);
48 #if defined(_OPENMP)
49     #pragma omp parallel for collapse(4)
50 #endif /* _OPENMP */
51     for(int b = 0; b < batch_in; ++b)
52     {
53         for(int z = 0; z < channel_in; ++z)
54         {
55             for(int y = 0; y < height_in; ++y)
56             {
57                 for(int x = 0; x < width_in; ++x)
58                 {
59                     const int out_x   = (block_shape * x + (z / r) % block_shape);
60                     const int out_y   = (block_shape * y + (z / r) / block_shape);
61                     const int out_pos = out_x + dst_shape[0] * out_y + (z % r) * dst_shape[0] * dst_shape[1] + b * dst_shape[0] * dst_shape[1] * dst_shape[2];
62                     const int in_pos  = x + width_in * y + z * width_in * height_in + b * width_in * height_in * channel_in;
63                     result[out_pos]   = src[in_pos];
64                 }
65             }
66         }
67     }
68 
69     return result;
70 }
71 template SimpleTensor<float> depth_to_space(const SimpleTensor<float> &src, const TensorShape &dst_shape, int32_t block_shape);
72 template SimpleTensor<half> depth_to_space(const SimpleTensor<half> &src, const TensorShape &dst_shape, int32_t block_shape);
73 } // namespace reference
74 } // namespace validation
75 } // namespace test
76 } // namespace arm_compute
77